Validation of a non-invasive technology to measure bilirubin in newborns
新生儿胆红素非侵入性测量技术的验证
基本信息
- 批准号:9356573
- 负责人:
- 金额:$ 28.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-29 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:African AmericanAlgorithmsAsiansBilirubinCalibrationCaringCellular PhoneCharacteristicsClinicalColorConfidence IntervalsDataData AnalysesData CollectionDevicesDiscipline of NursingEnrollmentEthnic OriginEthnic groupFacultyFoundationsFundingGoalsGoldGrantHealth ProfessionalHealthcareHispanicsHuman DevelopmentHyperbilirubinemiaIcterusImageInfantInstructionKernicterusLatinoLightLightingLocationMeasuresMethodologyNeonatal JaundiceNeurologicNewborn InfantNurseriesNursesOutcomePharmaceutical PreparationsPhonationPhysiciansPrivatizationProceduresProcessRaceReadingReproducibilitySample SizeSamplingSecureSerumSiteSkinSkin PigmentationStandardizationSystemTechnologyTestingUnited StatesUnited States Food and Drug AdministrationUnited States National Institutes of HealthUniversitiesValidationWashingtonbasecare systemsclinical decision-makingdesigndigital imagingethnic diversityfollow-upmeetingsneonatal careneonatepreventracial diversitysoftware developmentusabilityvalidation studies
项目摘要
Project Summary
Neonatal jaundice, or hyperbilirubinemia, is an almost ubiquitous condition in newborn infants. In very rare
circumstances, if an infant with signficant hyperbilirubinemia is undetected, kernicterus, a devastating and
permanent neurologic condition, can develop. Still rare, but much more frequently, a neonate with significant
jaundice is not identified until the bilirubin level is very high, necessitating complicated and expensive care to
prevent bilirubin encephalopathy. Although the identification of infants with moderate hyperbilirubinemia, at
levels that are easily treatable, is a central focus of neonatal care in the US, bilirubin levels typically peak after
most neonates are discharged from the newborn nursery. There is currently a lack of accurate, inexpensive
and widely available methodologies to screen discharged infants for jaundice, leaving a notable void in the
overall system of care designed to prevent severe hyperbilirubinemia. Our group has developed a non-
invasive technology, called BiliCam, to measure bilirubin in newborn infants. The technology is based on the
analysis of digital images of newborn skin that are obtained with a smartphone app that we have developed.
Based on this analysis a bilirubin estimate is calculated and displayed on the smartphone. A study to collect
data do develop and finalize the algorithm converting data from the images into an estimate bilirubin level is
currently in progress. To date, a racially and ethnically diverse sample of over 500 newborn infants from 7
sites across the United States have been enrolled in this study. The results are very promising; BiliCam
provides estimates of bilirubin that are similar in accuracy to those achieved with a transcutaneous
bilirubinometer, the predicate device. Data collection for the study will conclude in late 2016 and the algorithm
will be finalized. In order to commercialize the technology, the developers have formed a private company,
BiliCam, LLC. In a presubmission meeting with the Food and Drug Administration (FDA) the studies needed to
be completed to support a 510(k) submission for initial clearance for Bilicam were described. The overall goal
of the proposed project is to conduct these studies needed for obtaining FDA clearance. First, a clinical
validation study will be conducted using BiliCam to estimate bilirubin levels in a diverse sample of > 200
newborns from three sites. The estimated bilirubin levels will be compared to the total serum bilirubin (TSB)
level, the gold standard for clinical decision making, in the newborns. Second, the reproducibility of BiliCam
results will be assessed using 10 different smartphones with the app installed to obtain sets of images from 3
phantoms representing various bilirubin levels; over 300 readings will be obtained. Finally, the usability of the
BiliCam app will be assessed in 45 healthcare professionals who are the intended users for the initial
clearances for the technology. A two-year study period is planned.
!
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Stephen Clarke其他文献
Michael Stephen Clarke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




