Spectroscopic Photoacoustic Molecular Imaging for Breast Lesion Characterization
用于乳腺病变表征的光谱光声分子成像
基本信息
- 批准号:9314864
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAlgorithmsAntibodiesBenignBindingBinding ProteinsBioinformaticsBiological Neural NetworksBiopsyBreastBreast Cancer DetectionBreast Cancer ModelCD276 geneCallbackCancer BiologyCancer DetectionCessation of lifeClassificationClinicClinicalContrast MediaDataDetectionDevelopmentDigital Signal ProcessingDimensionsEarly DiagnosisEducationEthicsExcisionFDA approvedFacultyFemaleFluorescenceFluorescent DyesFrozen SectionsGoalsHealthHistologicHyperplasiaImageIndividualIndocyanine GreenInstitutionLesionLinear RegressionsMachine LearningMalignant - descriptorMalignant NeoplasmsMammary Gland ParenchymaMammographyMeasuresMedicalMentorsMeta-AnalysisMethodologyMethodsModalityModelingMolecularMolecular TargetMusNoiseNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOpticsPatientsPostoperative PeriodPredictive ValuePreparationProspective StudiesROC CurveRecurrenceResearchResearch PersonnelSchemeSensitivity and SpecificitySignal TransductionSpecificityStatistical MethodsSupervisionTechnical ExpertiseTechniquesTestingTherapeuticTimeTissue ModelTissuesTrainingTransgenic MiceTransgenic OrganismsTranslatingUltrasonographyUnited StatesValidationWomanabsorptionantibody conjugatebasebreast imagingbreast lesionbreast surgerycancer biomarkerscareercareer developmentclinically actionableclinically translatablecontrast enhancedcostcourse developmentdesigndiagnostic accuracyeconomic needfluorescence imagingformal learningimage processingimaging agentimaging approachimaging modalityimprovedin vivoinformal learningmalignant breast neoplasmmolecular imagingmortalitymouse modelnoveloptical imagingoverexpressionprototypescreeningtargeted agenttargeted imagingtooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Claiming more than 40,000 lives in the United States in 2015, breast cancer presents an important health
focus. Mammography and ultrasound, current screening methods, suffer from low sensitivity and low positive
predictive value, respectively, particularly in patients with dense breast tissues. Therefore, a non-invasive
method of distinguishing between benign and malignant lesions that could be incorporated with current
screening modalities is critically needed. With more advanced screening methods, there is an increase in the
detection of early malignant lesions, for which breast-conserving treatment has become more routine.
However, intraoperative frozen-section margin assessment is time consuming and suffers from low sensitivity,
while post-operative histological analysis leaves potential for positive margins, strongly correlated with
reoccurrence. Therefore, a real-time method to detect tumor margins intraoperatively is critically needed. We
propose using spectroscopic photoacoustic and fluorescence molecular imaging combined with a clinically-
translatable contrast agent targeted to a novel breast cancer marker (B7-H3) to non-invasively distinguish
normal from malignant tissues both during screening (aim 1) and intraoperatively during surgical resection (aim
3). The sensitivity of this imaging method will be increased with the use of machine learning post-processing
algorithms to autonomously detect molecular B7-H3 signal (aim 2). In summary, this proposal will result in
significant change to current clinical breast imaging and surgical resection practice to improve the detection
and treatment of focal breast lesions.
The training portion of this plan, required to accomplish these research goals, has been designed with trainee
mentors with specific technical expertise. Dr. Willmann is an expert in translational molecular imaging and
contrast agent use, while Dr. Rubin is an expert in bioinformatics, image processing, and machine learning for
medical imagine purposes. Additionally, the project is supported by a diverse advisory committee with experts
in clinical breast imaging (Dr. Debra Ikeda), optical imaging and intraoperative guidance (Dr. Christopher
Contag), and clinical breast surgery (Dr. Irene Wapnir). To date, the candidate has developed expertise in
photoacoustic, ultrasound, and fluorescence molecular imaging and molecular contrast agent development and
in vivo use during her graduate and postdoctoral research. Her long term career goals include developing
clinically translatable combined spectroscopic photoacoustic and fluorescence molecular imaging methods
combined with novel contrast agents for cancer detection and differentiation. Additionally, her research will
focus on developing machine learning algorithms for increasing the sensitivity of the molecular imaging
approach as well as adapting her method for therapeutic purposes. In preparation for her independent
research career, the training plan includes formal education in machine learning, digital signal processing,
optical imaging, and cancer biology, as well as in career development classes and ethical conduct of research.
项目总结/摘要
2015年,美国有4万多人死于乳腺癌,这是一个重要的健康问题。
专心点目前的筛查方法乳腺X线摄影和超声检查存在灵敏度低、阳性率低的缺点,
预测值,分别,特别是在致密乳腺组织的患者。因此,非侵入性
一种区分良性和恶性病变的方法,可以结合电流
筛选模式是迫切需要的。随着更先进的筛查方法,
早期恶性病变的检测,因此保乳治疗已成为常规。
然而,术中冰冻切片边缘评估耗时且敏感性低,
虽然术后组织学分析留下了阳性边缘的可能性,但与
重现因此,迫切需要一种术中实时检测肿瘤边缘的方法。我们
建议使用光谱光声和荧光分子成像结合临床-
靶向新型乳腺癌标记物(B7-H3)的可转移造影剂,
在筛选期间(aim 1)和手术切除期间(aim
3)。这种成像方法的灵敏度将随着机器学习后处理的使用而增加
自主检测分子B7-H3信号的算法(目标2)。总而言之,这一提议将导致
对当前临床乳腺成像和手术切除实践进行了重大变更,以提高检测率
和治疗局灶性乳腺病变。
本计划的培训部分,需要完成这些研究目标,已设计与受训者
具有特定技术专长的导师。Willmann博士是翻译分子成像专家,
对比剂的使用,而鲁宾博士是生物信息学,图像处理和机器学习的专家,
医学想象的目的此外,该项目还得到了一个由专家组成的多元化咨询委员会的支持。
在临床乳腺成像(Debra Ikeda博士)、光学成像和术中引导(Christopher博士
Contag)和临床乳房手术(Irene Wapnir博士)。到目前为止,候选人已经发展了以下方面的专门知识:
光声、超声和荧光分子成像和分子造影剂开发,
在她的研究生和博士后研究期间体内使用。她的长期职业目标包括发展
临床上可转换的组合光谱光声和荧光分子成像方法
与用于癌症检测和区分的新型造影剂组合。此外,她的研究将
专注于开发机器学习算法,以提高分子成像的灵敏度
方法以及调整她的方法用于治疗目的。为了准备独立
研究职业,培训计划包括机器学习,数字信号处理,
光学成像和癌症生物学,以及职业发展课程和研究的道德行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katheryne E Wilson其他文献
Katheryne E Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katheryne E Wilson', 18)}}的其他基金
Molecular Spectroscopic Photoacoustic Imaging for Breast Lesion Characterization
用于乳腺病变表征的分子光谱光声成像
- 批准号:
9303366 - 财政年份:2016
- 资助金额:
$ 7.6万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Research Grant














{{item.name}}会员




