Spectroscopic Photoacoustic Molecular Imaging for Breast Lesion Characterization

用于乳腺病变表征的光谱光声分子成像

基本信息

  • 批准号:
    9314864
  • 负责人:
  • 金额:
    $ 7.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Claiming more than 40,000 lives in the United States in 2015, breast cancer presents an important health focus. Mammography and ultrasound, current screening methods, suffer from low sensitivity and low positive predictive value, respectively, particularly in patients with dense breast tissues. Therefore, a non-invasive method of distinguishing between benign and malignant lesions that could be incorporated with current screening modalities is critically needed. With more advanced screening methods, there is an increase in the detection of early malignant lesions, for which breast-conserving treatment has become more routine. However, intraoperative frozen-section margin assessment is time consuming and suffers from low sensitivity, while post-operative histological analysis leaves potential for positive margins, strongly correlated with reoccurrence. Therefore, a real-time method to detect tumor margins intraoperatively is critically needed. We propose using spectroscopic photoacoustic and fluorescence molecular imaging combined with a clinically- translatable contrast agent targeted to a novel breast cancer marker (B7-H3) to non-invasively distinguish normal from malignant tissues both during screening (aim 1) and intraoperatively during surgical resection (aim 3). The sensitivity of this imaging method will be increased with the use of machine learning post-processing algorithms to autonomously detect molecular B7-H3 signal (aim 2). In summary, this proposal will result in significant change to current clinical breast imaging and surgical resection practice to improve the detection and treatment of focal breast lesions. The training portion of this plan, required to accomplish these research goals, has been designed with trainee mentors with specific technical expertise. Dr. Willmann is an expert in translational molecular imaging and contrast agent use, while Dr. Rubin is an expert in bioinformatics, image processing, and machine learning for medical imagine purposes. Additionally, the project is supported by a diverse advisory committee with experts in clinical breast imaging (Dr. Debra Ikeda), optical imaging and intraoperative guidance (Dr. Christopher Contag), and clinical breast surgery (Dr. Irene Wapnir). To date, the candidate has developed expertise in photoacoustic, ultrasound, and fluorescence molecular imaging and molecular contrast agent development and in vivo use during her graduate and postdoctoral research. Her long term career goals include developing clinically translatable combined spectroscopic photoacoustic and fluorescence molecular imaging methods combined with novel contrast agents for cancer detection and differentiation. Additionally, her research will focus on developing machine learning algorithms for increasing the sensitivity of the molecular imaging approach as well as adapting her method for therapeutic purposes. In preparation for her independent research career, the training plan includes formal education in machine learning, digital signal processing, optical imaging, and cancer biology, as well as in career development classes and ethical conduct of research.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katheryne E Wilson其他文献

Katheryne E Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katheryne E Wilson', 18)}}的其他基金

Molecular Spectroscopic Photoacoustic Imaging for Breast Lesion Characterization
用于乳腺病变表征的分子光谱光声成像
  • 批准号:
    9303366
  • 财政年份:
    2016
  • 资助金额:
    $ 7.6万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了