COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
基本信息
- 批准号:9268713
- 负责人:
- 金额:$ 65.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AODD relapseAccountingAddressAgreementAlcohol or Other Drugs useAlgorithmic AnalysisAlgorithmsAttentionBrain imagingClassificationClinical DataClinical ResearchCollaborationsCommunitiesConsent FormsCoupledDataData AggregationData SetData SourcesDecentralizationDevelopmentEnsureFamilyFunctional Magnetic Resonance ImagingFundingGeneticGenetic MarkersHealthHippocampus (Brain)HumanIndividualInformaticsInstitutionInternationalKnowledgeLanguageLettersLinear ModelsLocationLogisticsMachine LearningManualsMeasuresMethodsMovementPaperPlant RootsPoaceaePopulationPrivacyPrivatizationProceduresProcessReproducibilityResearchResearch PersonnelResourcesRiskRunningScienceSiteStreamSubstance abuse problemSystemTestingTimeUnited States National Institutes of Healthbasecommunecomputer frameworkcomputing resourcesconnectomecostdata sharingdistributed dataflexibilityimaging geneticsimaging modalityindependent component analysisneuroimagingnovelopen datapeerpublic health relevancequality assurancerepositorystatisticstoolvirtual
项目摘要
DESCRIPTION (provided by applicant):
The brain imaging community is greatly benefiting from extensive data sharing efforts currently underway5,10. However, there is a significant gap in existing strategies which focus on anonymized, post-hoc sharing of either 1) full raw or preprocessed data [in the case of open studies] or 2) manually computed summary measures [such as hippocampal volume11, in the case of closed (or not yet shared) studies] which we propose to address. Current approaches to data sharing often include significant logistical hurdles both for the investigator sharing the dat as well as for the individual requesting the data (e.g. often times multiple data sharing agreements and approvals are required from US and international institutions). This needs to change, so that the scientific community becomes a venue where data can be collected, managed, widely shared and analyzed while also opening up access to the (many) data sets which are not currently available (see recent overview on this from our group2).
The large amount of existing data requires an approach that can analyze data in a distributed way while also leaving control of the source data with the individual investigator; this motivates dynamic, decentralized way of approaching large scale analyses. We are proposing a peer-to-peer system called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The system will provide an independent, open, no-strings-attached tool that performs analysis on datasets distributed across different locations. Thus, the step of actually aggregating data can be avoided, while the strength of large-scale analyses can be retained. To achieve this, in Aim 1, the uniform data interfaces that we propose will make it easy to share and cooperate. Robust and novel quality assurance and replicability tools will also be incorporated. Collaboration and data sharing will be done through forming temporary (need and project-based) virtual clusters of studies performing automatically generated local computation on their respective data and aggregating statistics in global inference procedures. The communal organization will provide a continuous stream of large scale projects that can be formed and completed without the need of creating new rigid organizations or project-oriented storage vaults. In Aim 2, we develop, evaluate, and incorporate privacy-preserving algorithms to ensure that the data used are not re-identifiable even with multiple re-uses. We also will develop advanced distributed and privacy preserving approaches for several key multivariate families of algorithms (general linear model, matrix factorization [e.g. independent component analysis], classification) to estimate intrinsic networks and perform data fusion. Finally, in Aim 3, we will demonstrate the utility of this approach in a proof of concept study through distributed analyses of substance abuse datasets across national and international venues with multiple imaging modalities.
描述(由申请人提供):
脑成像社区正从目前正在进行的广泛数据共享工作中受益匪浅5,10。然而,现有策略存在显着差距,这些策略侧重于匿名、事后共享1)完整的原始或预处理数据[在开放研究的情况下]或2)手动计算的汇总测量值[例如海马体积11,在关闭(或尚未共享)研究的情况下]我们建议解决这些问题。目前的数据共享方法通常包括研究者共享数据以及请求数据的个人的重大后勤障碍(例如,通常需要美国和国际机构的多个数据共享协议和批准)。这种情况需要改变,使科学界成为一个可以收集、管理、广泛分享和分析数据的场所,同时也开放对目前无法获得的(许多)数据集的访问(见我们小组最近对此的概述2)。
大量的现有数据需要一种方法,可以以分布式的方式分析数据,同时也将源数据的控制权留给个体研究者;这激发了动态的、分散的方式来进行大规模分析。我们提出了一个点对点系统,称为协作信息学和神经成像套件工具包匿名计算(CONOMAC)。该系统将提供一个独立、开放、不附带任何条件的工具,对分布在不同地点的数据集进行分析。因此,可以避免实际汇总数据的步骤,同时保留大规模分析的优势。为了实现这一目标,在目标1中,我们提出的统一数据接口将使共享和合作变得容易。还将纳入强有力和新颖的质量保证和可复制性工具。将通过形成临时(基于需要和项目)虚拟研究集群,对各自数据进行自动生成的本地计算,并在全球推理程序中汇总统计数据,来进行协作和数据共享。公共组织将提供一个连续的大型项目流,可以形成和完成,而不需要创建新的刚性组织或面向项目的存储库。在目标2中,我们开发,评估和整合隐私保护算法,以确保即使多次重复使用,所使用的数据也不会被重新识别。我们还将为几个关键的多变量算法家族(一般线性模型,矩阵分解[例如独立分量分析],分类)开发先进的分布式和隐私保护方法,以估计内在网络并执行数据融合。最后,在目标3中,我们将通过在国家和国际场所使用多种成像方式对药物滥用数据集进行分布式分析来证明这种方法在概念验证研究中的实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCE D CALHOUN其他文献
VINCE D CALHOUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10410073 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:
10252236 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10197867 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10443779 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
9811339 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:
10157432 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10645089 - 财政年份:2019
- 资助金额:
$ 65.51万 - 项目类别:
COINSTAC 2.0: decentralized, scalable analysis of loosely coupled data
COINSTAC 2.0:松散耦合数据的去中心化、可扩展分析
- 批准号:
10622017 - 财政年份:2015
- 资助金额:
$ 65.51万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别: