Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
基本信息
- 批准号:9055648
- 负责人:
- 金额:$ 41.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATM Gene MutationATP phosphohydrolaseAddressAdvanced DevelopmentAdvanced Malignant NeoplasmAntibodiesBindingBinding ProteinsBiochemicalBiochemical GeneticsBiochemistryBiologicalBiological AssayBiologyCancer EtiologyCell DeathCellsCellular biologyChemicalsChromosomal InstabilityChromosomesComplexCoupledDNADNA BindingDNA DamageDNA Double Strand BreakDNA IntegrationDNA RepairDNA Repair PathwayDNA replication forkDefectDevelopmentEukaryotaFission YeastFundingFutureGeneticGenomic InstabilityHealthHumanHydrolysisImmunodeficiency and CancerInheritedKnowledgeLeadLinkMalignant NeoplasmsMediatingMedicineMeiosisMolecularMolecular ConformationMutagenesisMutateMutationNeurodegenerative DisordersNijmegen Breakage SyndromeNonhomologous DNA End JoiningNormal CellOutcomePathway interactionsPatientsPhenotypePlayPredispositionProcessProteinsRadiationRadiation ToleranceRecruitment ActivityResearch Project GrantsResistanceResolutionRoentgen RaysRoleSignal PathwaySignal TransductionStructural BiochemistryStructureStructure-Activity RelationshipTechnologyTelomere MaintenanceTestingTherapeutic InterventionUnited States National Institutes of HealthWorkYeastsataxia telangiectasia mutated proteinataxia-telangiectasia like disorderbasecancer cellcancer therapychemotherapydesignendoexonucleaseendonucleasegenetic analysishuman diseaseinhibitor/antagonistinsightkillingsmicrobialmutantnucleaserecombinational repairrepairedresponsesmall moleculestructural biologysuccesstelomeretoolyeast genetics
项目摘要
DESCRIPTION (provided by applicant): Defects in the Mre11-Rad50-Nbs1 (MRN) complex results in human disease including cancer, and severe DNA damage phenotypes in yeast. MRN, acting with CtIP, is essential for the repair of double- stranded DNA breaks (DSBs) by homologous recombinational repair (HRR), as well as acting in meiosis, antibody hypermutation, telomere maintenance, rescue of stalled replication forks, and DNA damage signaling through ATM kinase. Yet, the mechanistic basis for diverse MRN functions is poorly understood. We propose three Specific Aims to understand MRN, CtIP and ATM structural biochemistry, activities, conformations and interactions relevant for DSB repair and signaling. We will couple advanced biophysical technologies, including atomic-resolution crystal structures and small- angle X-ray scattering in solution, with mutagenesis, biochemistry and yeast genetic analyses. Our integrated approaches will test hypotheses that dynamic MRN conformations and macromolecular interfaces control biological responses at DSBs. In particular, our results will significantly advance knowledge of 1) Mre11 DNA-binding and nuclease mechanisms and their importance for DNA repair pathway choice and progression. 2) How Rad50 binds to DNA and uses its ATPase activity to both handoff DNA to Mre11 and allosterically regulate Mre11 nuclease activities. 3) A Rad50 patient mutation that will advance our understanding of therapeutically targetable Rad50 protein features. 4) Catalytic and non-catalytic roles of CtIP. 5)
How MRN recruits and activates ATM at DSBs. Our latest Mre11 inhibitor results and work from others in the field suggest that MRN roles in DSB repair and signaling are viable targets for the development of advanced adjunct cancer therapies, which work by synthetic lethality with current radiation and chemotherapies along with weaknesses in other DNA repair or signaling pathways arising from either inhibitors or cancer-specific genetic defects. Thus, our integrated results will provide a molecular framework for understanding cancer etiologies from DNA repair defects and for the design of advanced cancer therapies targeted against specific MRN activities. Collectively, project results will connect MRN, CtIP and ATM to cellular outcomes and human disease-states by defining interactions, conformations and mechanisms critical for genetic integrity, cancer therapy resistance, and future cancer treatments.
描述(由申请方提供):Mre 11-Rad 50-Nbs 1(MRN)复合物中的缺陷导致人类疾病,包括癌症和酵母中的严重DNA损伤表型。与CtIP一起作用的MRN对于通过同源重组修复(HRR)修复双链DNA断裂(DSB)以及在减数分裂、抗体超突变、端粒维持、停滞复制叉的拯救和通过ATM激酶的DNA损伤信号传导中起作用是必不可少的。然而,各种MRN功能的机械基础知之甚少。我们提出了三个具体的目标,以了解MRN,CtIP和ATM的结构生物化学,活动,构象和相互作用相关的DSB修复和信号。我们将把先进的生物物理技术(包括原子分辨率晶体结构和溶液中的小角X射线散射)与突变、生物化学和酵母遗传分析结合起来。我们的综合方法将测试假设,动态MRN构象和大分子界面控制生物反应在DSBs。特别是,我们的研究结果将显着推进1)Mre 11 DNA结合和核酸酶机制及其对DNA修复途径选择和进展的重要性的认识。2)Rad 50如何与DNA结合并利用其ATP酶活性将DNA传递给Mre 11并变构调节Mre 11核酸酶活性。3)Rad 50患者突变将促进我们对治疗靶向Rad 50蛋白特征的理解。4)CtIP的催化和非催化作用。第五章)
MRN如何在DSB招募和激活ATM。我们最新的Mre 11抑制剂结果和该领域其他人的工作表明,MRN在DSB修复和信号传导中的作用是开发高级辅助癌症疗法的可行靶点,该疗法通过与当前放疗和化疗的合成致死性沿着抑制剂或癌症特异性遗传缺陷引起的其他DNA修复或信号传导途径的弱点而起作用。因此,我们的综合结果将为理解DNA修复缺陷的癌症病因学和针对特定MRN活动的先进癌症疗法的设计提供分子框架。总的来说,项目结果将通过定义对遗传完整性、癌症治疗抗性和未来癌症治疗至关重要的相互作用、构象和机制,将MRN、CtIP和ATM与细胞结果和人类疾病状态联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL RUSSELL其他文献
PAUL RUSSELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL RUSSELL', 18)}}的其他基金
MMS1-MMS22 COMPLEX PROTECTS GENOME INTEGRITY IN SCHIZOSACCHAROMYCES POMBE
MMS1-MMS22 复合物保护粟酒裂殖酵母基因组完整性
- 批准号:
8171474 - 财政年份:2010
- 资助金额:
$ 41.15万 - 项目类别:
REGULATOR OF HOMOLOGOUS RECOMBINATION IN EUKARYOTIC CELLS
真核细胞同源重组的调节因子
- 批准号:
7602147 - 财政年份:2007
- 资助金额:
$ 41.15万 - 项目类别:
ANALYSIS OF OXIDATIVE STRESS PROTEINS IN S POMBE
粟酒裂殖酵母中氧化应激蛋白的分析
- 批准号:
7420714 - 财政年份:2006
- 资助金额:
$ 41.15万 - 项目类别:
Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
- 批准号:
8658009 - 财政年份:2005
- 资助金额:
$ 41.15万 - 项目类别:
Yeast Genetics and Stress Response Genes-Biomedical
酵母遗传学和应激反应基因-生物医学
- 批准号:
6897642 - 财政年份:2005
- 资助金额:
$ 41.15万 - 项目类别:
SWI1 AND SWI3 ARE COMPONENTS OF A REPLICATION FORK PROTECTION COMPLEX IN FISSIO
SWI1 和 SWI3 是 FISSIO 中复制叉保护复合体的组件
- 批准号:
7182317 - 财政年份:2005
- 资助金额:
$ 41.15万 - 项目类别:
Mre11/Rad50/Nbs1 Structural Biology for DNA Damage Responses
Mre11/Rad50/Nbs1 DNA 损伤反应的结构生物学
- 批准号:
8888891 - 财政年份:2005
- 资助金额:
$ 41.15万 - 项目类别:
SLX1-SLX4: SUBUNITS OF A STRUCTURE-SPECIFIC ENDONUCLEASE
SLX1-SLX4:结构特异性核酸内切酶的亚基
- 批准号:
6979702 - 财政年份:2004
- 资助金额:
$ 41.15万 - 项目类别:
ANALYSIS OF OXIDATIVE STRESS PROTEINS IN S. POMBE
粟酒裂殖酵母中氧化应激蛋白的分析
- 批准号:
6979710 - 财政年份:2004
- 资助金额:
$ 41.15万 - 项目类别:














{{item.name}}会员




