Tracking Organ Doses for Patient Safety in Radiation Therapy

跟踪器官剂量以确保放射治疗中的患者安全

基本信息

  • 批准号:
    9326287
  • 负责人:
  • 金额:
    $ 37.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Abstract The ultimate goal of radiation therapy is to maximize tumor killing with lethal radiation doses while minimizing normal tissue damage during radiation treatment. Although tumor control has been improved significantly with the advent of advanced beam delivery and image-guidance technologies, normal tissue toxicity continues to be of growing concern in the clinic. There are four major reasons: (1) leakage and scatter doses associated with advanced beam delivery are not accurately considered by commercial treatment planning system (TPS) dose calculation methods; (2) TPS dose calculations are only performed for contoured organs within a patient's anatomical volume of interest while providing no dose information for non-contoured organs; (3) organ doses on treatment day can be quite different from planned doses due to changes in organ volume, shape and location; (4) kilo-voltage imaging doses are not considered in total dose accumulation as current commercial TPS cannot simulate kilo-voltage x-rays dose deposition. For these reasons and without warning some patients may accumulate dangerously high doses in radiosensitive organs over time and be susceptible to radiation-related side effects. A number of recent studies have shown that non-negligible second cancer risks are associated with increased organ doses from scatter and leakage radiations that are not correctly accounted for by commercial TPS. In order to achieve maximal benefits of modern radiotherapy with minimal normal tissue toxicities, one must have an accurate and comprehensive account of organ doses for the individual patient. Hence, we propose to develop a personal organ dose archive (PODA) where 3D dose distributions, treatment plans and radiation responses of all the relevant organs are recorded for each individual patient undergoing radiotherapy. Our idea is that through comprehensive tracking and accurate mapping of dose accumulation in all organs we can provide a safety mechanism for early warning and help improve clinical decisions regarding radiation treatment for individual patient, similar to submarine topography detailing the geography of oceans. The goal of this project is to develop a personal organ dose archive based on 3D organ dose tracking and mapping for individual patients over time so that the safety of patients receiving radiation therapy is improved including pre and post care management. The specific aims of this project are: 1) to develop a graphics processing unit (GPU) based Monte Carlo engine for accurate and fast dose calculations in patients; 2) to build a personal organ dose archive based on dose tracking and deformable image registration; and 3) to assess the effectiveness of the developed personal organ dose archive by tracking 40 patients undergoing radiotherapy in the clinic. We hypothesize that an accurate and comprehensive account of organ doses from both therapy beams and image-guidance procedures may be used to improve patient safety and reduce normal tissue toxicities associated with radiotherapy.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Deng其他文献

Jun Deng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了