Megakaryocyte Transcription Factor Activation to Enhance In Vitro Platelet Production from Human IPSCs
巨核细胞转录因子激活可增强人 IPSC 的体外血小板生成
基本信息
- 批准号:9276771
- 负责人:
- 金额:$ 51.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-10 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAutoimmune DiseasesAutoimmune ProcessBiogenesisBlood Component RemovalBlood Platelet DisordersBlood PlateletsBlood VesselsBone MarrowBone Marrow TransplantationCalcineurinClinicalCodon NucleotidesComplexDevelopmentEmbryoEmbryonic DevelopmentEngineeringEventFLI1 geneFriendsGATA1 geneGeneticHealthHumanIn SituIn VitroInfectionInheritedKnowledgeLifeLiteratureMediatingMegakaryocytesMegakaryocytopoiesesMembraneMethodsMultiprotein ComplexesMusOutcomeOutcome StudyPTPN11 genePancytopeniaPathway interactionsPatientsPharmacologyPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhysiologicalPlatelet TransfusionPlayProcessProductionProtein DephosphorylationProtocols documentationRUNX1 geneRefractoryRoleSavingsSepsisSerineSignal PathwaySignal TransductionSiteTechniquesTechnologyTestingThrombopoiesisTyrosine PhosphorylationWorkbasecancer therapygene repressiongenetic manipulationin vivoinduced pluripotent stem cellkinase inhibitorprecursor cellprogenitorpublic health relevancesrc-Family Kinasesstemtranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Platelet transfusions are a life-saving treatment for health conditions related to cancer therapy, bone marrow transplantation, bone marrow failure, sepsis, genetic platelet disorders, and some autoimmune conditions. Currently, over 2 million apheresis platelet units and over 4 million pooled platelet concentrate units are transfused in the
U.S. each year. However the limited shelf life of donor platelets leads to frequent shortages. Moreover, multiply transfused patients often become refractory due to allosensitization. The advent of human embryonic stem (hES) and induced pluripotent stem cell (hIPSC) technology has raised the possibility of producing platelets in vitro for clinical use. This would allow for a essentially limitless supply of on-demand platelets and could be engineered to overcome allosensitization problems. However, current protocols are hampered by low platelet production efficiency. The major bottleneck is at the level of terminal megakaryocyte (Mk) maturation and platelet release, which is about 1000-fold lower in vitro compared to primary Mks in vivo. The major objective of this proposal is to further understand the physiologic mechanisms that regulate terminal thrombopoiesis and to apply these to enhance hIPSC in vitro platelet production. Terminal Mk maturation requires the action of a small group of key transcription factors (RUNX1, GATA1, Friend of GATA1, and FLI1) that physically associate with one another during differentiation. This drives high- level activation or repression of genes involved in polyploidization, platelet membrane genesis, platelet constituent biosynthesis and proplatelet formation. We hypothesize that key signaling events control the assembly of this "Mk enhancesome complex", and can be exploited to enhance IPSC based platelet production. We have previously identified key signaling events that regulate differentiation-dependent interaction among these factors. This includes src-family kinase (SFK) mediated tyrosine phosphorylation of RUNX1 and serine phosphorylation of FLI1 at codon 10. These findings are supported by work from other groups showing marked enhancement of primary murine and human Mk maturation by SFK inhibitors. The aims of this proposal are to further elaborate these signaling pathways and to determine the extent to which their pharmacologic and/or genetic manipulation enhances hIPSC-derived Mk maturation and platelet release, while preserving platelet function. In addition, we propose to apply the newly developed technique Fluorescent in situ RNA seq (FISSEQ) for non-biased discovery of additional signaling pathways that are engaged when Mk progenitors physically interact with the vascular sinusoidal niche, the physiologic site of terminal Mk maturation and platelet release. The expected outcome of this project is the elucidation of specific physiologic signaling pathways that can be manipulated to increase hIPSC platelet production efficiency.
描述(由申请人提供):血小板输注是与癌症治疗、骨髓移植、骨髓衰竭、败血症、遗传性血小板疾病和某些自身免疫性疾病相关的健康状况的挽救生命的治疗。目前,超过200万个单采血小板单位和超过400万个汇集的血小板浓缩物单位被输注在
美国每年.然而,有限的保存期限的供体血小板导致经常短缺。此外,多次输血的患者往往由于同种异体致敏而变得难治。人类胚胎干细胞(hES)和诱导多能干细胞(hIPSC)技术的出现提高了体外生产血小板用于临床的可能性。这将允许基本上无限的按需血小板供应,并且可以被工程化以克服同种异体致敏问题。然而,目前的方案受到低血小板生产效率的阻碍。主要的瓶颈是在终末巨核细胞(Mk)成熟和血小板释放的水平,这是约1000倍低于在体外相比,在体内的主要Mk。该提案的主要目的是进一步了解调节终末血小板生成的生理机制,并将其应用于增强hIPSC体外血小板生成。终末Mk成熟需要一小组关键转录因子(RUNX 1,GATA 1,Friend of GATA 1和FLI 1)的作用,这些转录因子在分化过程中彼此物理关联。这驱动参与多倍化、血小板膜发生、血小板成分生物合成和前血小板形成的基因的高水平激活或抑制。我们假设关键信号事件控制这种“Mk增强体复合物”的组装,并且可以被利用来增强基于IPSC的血小板产生。我们先前已经确定了调节这些因子之间的分化依赖性相互作用的关键信号传导事件。这包括src家族激酶(SFK)介导的RUNX 1的酪氨酸磷酸化和FLI 1在密码子10处的丝氨酸磷酸化。这些发现得到了来自其他组的工作的支持,这些工作显示SFK抑制剂显著增强了原代鼠和人Mk成熟。本提案的目的是进一步阐述这些信号通路,并确定其药理学和/或遗传操作在多大程度上增强hIPSC衍生的Mk成熟和血小板释放,同时保留血小板功能。此外,我们建议应用新开发的技术荧光原位RNA测序(FISSEQ)的非偏见的发现额外的信号转导途径,从事时,Mk祖细胞物理相互作用的血管窦状隙,终端Mk成熟和血小板释放的生理位点。该项目的预期结果是阐明可以操纵以增加hIPSC血小板生产效率的特定生理信号传导途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN B. CANTOR其他文献
ALAN B. CANTOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN B. CANTOR', 18)}}的其他基金
Bone Marrow Spatial Transcriptomics to Enhance In Vitro Platelet Production
骨髓空间转录组学可增强体外血小板生产
- 批准号:
10457431 - 财政年份:2021
- 资助金额:
$ 51.04万 - 项目类别:
Bone Marrow Spatial Transcriptomics to Enhance In Vitro Platelet Production
骨髓空间转录组学可增强体外血小板生产
- 批准号:
10278405 - 财政年份:2021
- 资助金额:
$ 51.04万 - 项目类别:
Regulation of RUNX1 Multiprotein Complex Formation during Hematopoiesis
造血过程中 RUNX1 多蛋白复合物形成的调控
- 批准号:
9132792 - 财政年份:2013
- 资助金额:
$ 51.04万 - 项目类别:
Regulation of RUNX1 Multiprotein Complex Formation during Hematopoiesis
造血过程中 RUNX1 多蛋白复合物形成的调控
- 批准号:
8735133 - 财政年份:2013
- 资助金额:
$ 51.04万 - 项目类别:
Regulation of RUNX1 Multiprotein Complex Formation during Hematopoiesis
造血过程中 RUNX1 多蛋白复合物形成的调控
- 批准号:
8632270 - 财政年份:2013
- 资助金额:
$ 51.04万 - 项目类别:
Role of zfp148 (ZBP-89) in Erythroid Development
zfp148 (ZBP-89) 在红细胞发育中的作用
- 批准号:
7458643 - 财政年份:2007
- 资助金额:
$ 51.04万 - 项目类别:
Role of zfp148 (ZBP-89) in Erythroid Development
zfp148 (ZBP-89) 在红细胞发育中的作用
- 批准号:
7217635 - 财政年份:2006
- 资助金额:
$ 51.04万 - 项目类别:
Proteomic Approach to Further Understanding the Role of*
进一步了解*作用的蛋白质组学方法
- 批准号:
7128102 - 财政年份:2005
- 资助金额:
$ 51.04万 - 项目类别:
Proteomic Approach to Further Understanding the Role of*
进一步了解*作用的蛋白质组学方法
- 批准号:
7279213 - 财政年份:2005
- 资助金额:
$ 51.04万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
- 批准号:
23H02155 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Operating Grants
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Biomarkers of vascular endothelial dysfunction in systemic autoimmune diseases: analysis of circulating microRNAs
系统性自身免疫性疾病中血管内皮功能障碍的生物标志物:循环 microRNA 分析
- 批准号:
23K14742 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NOVEL HUMORAL AND CELLULAR BIOMARKERS OF AUTOIMMUNE DISEASES CAUSED BY IMMUNOTHERAPY
免疫治疗引起的自身免疫性疾病的新型体液和细胞生物标志物
- 批准号:
10593224 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
- 批准号:
10864719 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Regulation of autoimmune diseases by PTPN22 phosphatase
PTPN22磷酸酶对自身免疫性疾病的调节
- 批准号:
23K06589 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decipher and target GABA metabolism and GABA receptor-mediated signaling in autoimmune diseases
破译并靶向自身免疫性疾病中的 GABA 代谢和 GABA 受体介导的信号传导
- 批准号:
10623380 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别:
Targeting the long isoform of the prolactin receptor to treat autoimmune diseases and B-cell malignancies
靶向催乳素受体的长亚型来治疗自身免疫性疾病和 B 细胞恶性肿瘤
- 批准号:
10735148 - 财政年份:2023
- 资助金额:
$ 51.04万 - 项目类别: