Patient-Matched Stem Cells of the Barrett's-Dysplasia-Adenocarcinoma Sequence

Barretts-不典型增生-腺癌序列的患者匹配干细胞

基本信息

  • 批准号:
    9551729
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-25 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Contact PD/PI: McKeon, Frank Core-A-001 (004) Project Summary/Abstract: Virtual Biorespository (Core A) The absence of reliable, patient-specific models in cancer biology has been a chronic impediment to understanding heterogeneity, progression, metastasis, and chemotherapy resistance. Recent advances in technologies for cloning adult stem cells resident in normal, regenerative epithelia have been adapted to cloning stem cells from Barrett's esophagus. Investigators in the proposed Center have now extended this technology, in preliminary studies, to cloning the stem cells of dysplastic Barrett's and adenocarcinoma itself. The impact of this technology for resolving key questions in Barrett's and cancer biology in general, including the precise steps in tumorigenesis from precursor lesions, the functional and genomic intra-tumor heterogeneity and its impact on chemotherapy resistance, and lastly the nature and targetability of stem cells of precursor lesions and frank adenocarcinoma, is potentially transformative. As potentially transformative is a biorepository that exploits the regenerative and clonal nature of these stem cells to extend our knowledge of discrete cases in parallel fashion. In Aim 1, we will generate high-density arrays of stem cell clones corresponding to a topological sampling across four mucosal resections of patients with early adenocarcinoma. Aim 2 will generate large libraries of cancer stem cells from advanced cases of esophageal adenocarcinoma. Aim 3 will generate an interactive database that links datasets from both the arrays of clones derived from mucosal resections as well as those associated with analyses of the cancer stem cell libraries. We anticipate that such a virtual database of datasets would greatly augment downstream studies with the same libraries and discrete clones as each would come with such linked datasets that would be further extended by ongoing and future studies by investigators within the Center and across the community. Project Summary/Abstract Page 183 Contact PD/PI: McKeon, Frank Core-A-001 (004) FACILITIES, OTHER RESOURCES Frank McKeon, Ph.D. The University of Houston Scientific Environment: The McKeon lab is located within the Department of Biology and Biochemistry at the University of Houston. The University of Houston is located near to the Texas Medical Center, which is considered the largest medical center in the world. The physical location near to the Texas Medical Center also supports the institution's goal of continual partnership and collaboration with other institutions in the Texas Medical Center (MD Anderson Cancer Center, Baylor College of Medicine, Methodist Research Institute, Texas A&M Institute of Biosciences and Technology and others) by providing easy access to clinical samples and facilities and sharing space and support services. The University of Houston is currently undergoing unprecedented expansion and investment in biomedical research and the life sciences. Nine new tenured and tenure-track faculty have been hired in the Department of Biology and Biochemistry in the last three years, including a member of the National Academy of Sciences, and six of these new hires have been made at the Full Professor level. The University has made commitments to hire eight more tenure and tenure-track faculty into this department over the next three years. The University has also committed $25 million to establish new life science core facilities, including a genomics, proteomics cores, behavioral core laboratory, major upgrades in transgenic animal facilities and the genomics core, and advanced imaging technologies. Moreover, as a member Institution of the Texas Medical Center, University of Houston has equal access to all TMC core facilities and pricing. Furthermore, the Department of Biology and Biochemistry is home to more than 2,000 undergraduate students. These undergraduates can also participate in research and the educational events associated with the Department and Institute. The commitments of the University to biomedical research provide a vigorous and supportive environment for the research proposed in this grant. In addition, Dr. McKeon's leadership role in Center for Stem Cell Biology provides him an opportunity of establishing a crossdisciplinary team for stem cell technology innovation. Laboratory: Dr. McKeon has a laboratory with a floor space of ~2000 square feet including an instrument room equipped with 1 fume hoods, sinks, safety shower and eye-wash station, storage space at 4°C, -20°C, -80°C and desk and bench space for 12 researchers/students, a confined tissue culture room with six biosafety cabinets and eight cell culture incubators, a confined room for Nikon imaging equipment. The lab has been completely renovated and entirely equipped with new equipment. Office PI's office space consists of ~250 square feet (SERC 423) in the in The Department of Biology & Biochemistry and is equipped with telephone, computer and printer. Researcher/student office space is provided inside the laboratory and equipped with telephone, computers, scanner and printers. Animal: The University of Houston provides professional veterinary and husbandry services to support animals used in biomedical and behavioral research, including the maintenance of standards for animals, facilities, equipment, and procedures defined by the governing regulations and accreditation organizations. This is attained by providing such services to the Investigative staff as: animal procurement, training, veterinary consultation in research design, transportation of animals, and veterinary care. Dr. McKeon can also access the Facilities and Service Centers located at The University of Houston: UH NEXTGen Sequencing Center The UH Next Generation Sequencing (NGS) Center is a fully equipped molecular biological laboratory capable of conducting a variety of research tasks in the field of molecular biology and genomics. The high throughput sequencing equipment includes Illumina's NextSeq 500 Sequencer and Thermo Fisher's Ion Torrent PGM sequencer. Additional key equipment includes a OneTouch and OneTouch ES preparation system, Agilent 2100 Bioanalyzer, Biorad T100 thermo cycler, Beckman Coulter Allegra X-°© 15R refrigerated centrifuge, Nuaire Biological Safety Cabinet (Nu-°© 425-°© 500), Misonix Sonicator S-°© 4000, Eppendorf Facilities & Other Resources Page 184
联系PD/PI: McKeon, Frank Core-A-001 (004)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FRANK D. MCKEON其他文献

FRANK D. MCKEON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FRANK D. MCKEON', 18)}}的其他基金

Pro-Inflammatory Stem Cell Variants in Cystic Fibrosis
囊性纤维化中的促炎干细胞变异体
  • 批准号:
    10367503
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Patient-Matched Stem Cells of the Barrett's-Dysplasia-Adenocarcinoma Sequence
Barretts-不典型增生-腺癌序列的患者匹配干细胞
  • 批准号:
    10607403
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Pro-Inflammatory Stem Cell Variants in Cystic Fibrosis
囊性纤维化中的促炎干细胞变异体
  • 批准号:
    10557166
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Clonal Reconstruction and Targeting of the Correa Sequence
Correa 序列的克隆重建和靶向
  • 批准号:
    10470091
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
Clonal Reconstruction and Targeting of the Correa Sequence
Correa 序列的克隆重建和靶向
  • 批准号:
    9980818
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
Clonal Reconstruction and Targeting of the Correa Sequence
Correa 序列的克隆重建和靶向
  • 批准号:
    10194421
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
Clonal Reconstruction and Targeting of the Correa Sequence
Correa 序列的克隆重建和靶向
  • 批准号:
    10671032
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
Patient-Matched Stem Cells of the Barrett's-Dysplasia-Adenocarcinoma Sequence
Barretts-不典型增生-腺癌序列的患者匹配干细胞
  • 批准号:
    9761508
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
Monoclonal Antibodies and Genetic Elements for Airway Disease
气道疾病的单克隆抗体和遗传元件
  • 批准号:
    7827314
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
p63-Dependent Checkpoints in Oocytes
卵母细胞中 p63 依赖性检查点
  • 批准号:
    7900949
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:

相似国自然基金

大肠癌发生机制的adenoma-adenocarcinoma pathway同serrated pathway的关系的研究
  • 批准号:
    30840003
  • 批准年份:
    2008
  • 资助金额:
    12.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Synergistic Radiosensitization of Hypoxic Pancreatic Adenocarcinoma using Gd-Texaphyrin Oxygen-Loaded Nanodroplets
使用 Gd-Texaphyrin 载氧纳米液滴对缺氧胰腺腺癌进行协同放射增敏
  • 批准号:
    478914
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
Expression mechanism of immune checkpoint molecules after carbon-ion radiotherapy in cervical adenocarcinoma specimens
宫颈腺癌碳离子放疗后免疫检查点分子的表达机制
  • 批准号:
    23K14913
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study of fibrosis in pancreatic ductal adenocarcinoma (PDAC) and application of adipose-derived stromal/stem cells for PDAC treatment
胰腺导管腺癌(PDAC)纤维化的研究以及脂肪源性基质/干细胞在 PDAC 治疗中的应用
  • 批准号:
    23K15035
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
IRAK4 AS A NOVEL IMMUNOTHERAPEUTIC TARGET IN PANCREATIC DUCTAL ADENOCARCINOMA
IRAK4 作为胰腺导管腺癌的新型免疫治疗靶点
  • 批准号:
    10442874
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Therapeutic Targeting of NSD2 in Lung Adenocarcinoma
NSD2 在肺腺癌中的治疗靶向
  • 批准号:
    10657069
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Control mechanisms of lung adenocarcinoma by SGLT2 inhibitors for treating diabetes mellitus.
SGLT2抑制剂治疗糖尿病对肺腺癌的控制机制。
  • 批准号:
    23K08326
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of histological transformation model from lung small cell carcinoma from adenocarcinoma to explore the therapeutic strategies of small cell lung carcinoma.
建立肺小细胞癌腺癌组织学转化模型,探讨小细胞肺癌的治疗策略。
  • 批准号:
    23K14614
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms of tumor progression controlled by tumor-initiating cells and cancer-associated fibroblasts in pancreatic adenocarcinoma.
阐明胰腺腺癌中肿瘤起始细胞和癌症相关成纤维细胞控制的肿瘤进展机制。
  • 批准号:
    23K15075
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular mechanisms for development of pulmonary invasive mucinous adenocarcinoma
肺浸润性粘液腺癌发生的分子机制
  • 批准号:
    23H02698
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating the Cellular Origins of lung adenocarcinoma
阐明肺腺癌的细胞起源
  • 批准号:
    10743611
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了