Neurodegenerative and Neurodevelopmental Subcortical Shape Diffeomorphometry
神经退行性和神经发育皮层下形状微形态测量
基本信息
- 批准号:9355187
- 负责人:
- 金额:$ 68.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAmygdaloid structureAnatomyArchitectureAtlasesAtrophicAttention deficit hyperactivity disorderBasal GangliaBiological MarkersBrainBrain MappingChildhoodClassificationClientClinicalCommunitiesComplexComputer softwareCorpus striatum structureCouplingDataData SetDetectionDevelopmentDiagnosisDimensionsDiseaseDocumentationElderlyEvaluationFamilyGenetic LoadHippocampus (Brain)Huntington DiseaseImageImageryInstitutesInternetInvestigationIowaLaboratoriesLibrariesMagnetic ResonanceMeasuresMethodsModelingMorphologyNerve DegenerationNetwork-basedNeurocognitiveNeurologistOnset of illnessOntologyPatientsPopulationPositioning AttributeProbabilityProceduresPsychiatristPublic HealthResearchRiskSamplingSchizophreniaShapesSignal TransductionStatistical MethodsStatistical ModelsStructureSymptomsSystemTechnologyTestingThalamic structureTimeUniversitiesVariantbaseboysburden of illnessclinical biomarkerscomparison groupcomputational anatomycomputer sciencedata reductionentorhinal cortexhigh dimensionalityindexinginterestmedical schoolsmillimetermorphometrymultidisciplinaryneurodevelopmentneuroimagingnovelopen sourcepopulation basedputamenshape analysissoftware as a servicestatisticstoolvectorweb portal
项目摘要
Project Summary
Over the past decade, we have been building, parsing and wrangling systems for extracting
neurodegeneration and neurodevelopment biomarkers from high-dimensional magnetic resonance (MR)
imagery at 1 mm3 scale which are discriminating. At the same time, large and complex data sets and networks
of segmented structures are becoming increasingly available to the research community such as Predict-HD,
Track-HD, ADNI, and SchizConnect. Neuroscientists and clinicians are interested in tracking biomarkers which
characterize rates of atrophy in anatomical networks, onset of or changepoint times of spread through the
networks, and prediction of risk to conversion as determined by clinical symptoms. These wrangling and
modeling methods are novel. Our biomarkers are extracted via brain mapping technologies based on
diffeomorphometry, the study of morphological change via diffeomorphic tracking of anatomical coordinate
systems at the sub millimeter scale. Like stereology, diffeomorphometry discovers high-dimensional features
signalling neurodegeneration and neurodevelopment via tight integration of random field based statistical
methods via large deviation empirical probability estimators calculated via high-dimensional permutation
testing. Family-wise rates are calculated for group comparisons, and have been advanced changepoint
modelling allowing us to explicitly estimate the spread of progression of anatomical feature change through the
networked structures associated to neurodegeneration - Alzheimer's Disease (AD) and Huntingdon's Disease
(HD) and neurodevelopment - Schizophrenia (SZ) and Attention Deficit and Hyperactive Disorder (ADHD).
These tools will be disseminated and tested via MriCloud.
We will perform three specific aims. Aim 1 will use our MriCloud architecture to deploy a Multi-Atlas Brain
Mapping module for mapping an ontology of approximately 400 structures to T1 and DTI data. The architecture
will support many atlases which are matched across a broad range of age from pediatric to geriatric groups,
and as well as several diseases. Aim 2 will deploy a Statistical Shape Diffeomorphometry module consisting of
pipelines for a) generating templates of structures from populations of cross-sectional datasets, b) data
reduction to templates for cross-sectional and longitudinal geodesic mappings, and c) multiple hypothesis
testing procedures based on vertex, Laplace-Beltrami basis functions and PCA basis functions. Users with
their own ontology definitions of the subcortical structures will be able to generate population templates and
visualize the statistics in template coordinates. Aim 3 will generate a webportal for users to use modules from
Aims 1 and 2 to examine abnormalities in networks of structures such as the striatum, thalamus, amygdala and
hippocampus.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL I MILLER其他文献
MICHAEL I MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL I MILLER', 18)}}的其他基金
Tracing Spread of Pathology Within The HD Brain via Automated Neuroimaging
通过自动神经影像追踪 HD 大脑内病理学的传播
- 批准号:
10155594 - 财政年份:2018
- 资助金额:
$ 68.88万 - 项目类别:
Tracing Spread of Pathology Within The HD Brain via Automated Neuroimaging
通过自动神经影像追踪 HD 大脑内病理学的传播
- 批准号:
9924675 - 财政年份:2018
- 资助金额:
$ 68.88万 - 项目类别:
Neurodegenerative and Neurodevelopmental Subcortical Shape Diffeomorphometry
神经退行性和神经发育皮层下形状微形态测量
- 批准号:
9769057 - 财政年份:2016
- 资助金额:
$ 68.88万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
9896853 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
9118340 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
8610697 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别:
Continued Development and Maintenance of MriStudio
MriStudio的持续开发和维护
- 批准号:
10159312 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别:
BIGDATA Small Project Structurization and Direct Search of Medical Image Data
BIGDATA小项目结构化和医学图像数据直接搜索
- 批准号:
8599843 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别:
BIGDATA Small Project Structurization and Direct Search of Medical Image Data
BIGDATA小项目结构化和医学图像数据直接搜索
- 批准号:
8852613 - 财政年份:2013
- 资助金额:
$ 68.88万 - 项目类别: