Defining the Genetic Architecture of the Glutathione Redox System

定义谷胱甘肽氧化还原系统的遗传结构

基本信息

  • 批准号:
    9383618
  • 负责人:
  • 金额:
    $ 29.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The endogenous antioxidant glutathione (GSH) confers cells with the ability to resist stress, maintain survival, and properly regulate fundamental signaling pathways. The levels of GSH within a tissue, as well as the proportion of its reduced and oxidized forms, appear to be innate, demonstrating that eukaryotes inherit the relative capacity to synthesize and metabolize GSH. Despite this apparent genetic effect, the genetic regulation of the GSH system remains poorly defined. Instead, knowledge is currently limited to a small number of canonical GSH genes such as glutathione reductase (Gr) and glutathione peroxidase-1 (Gpx-1). Our preliminary studies revealed that the genetic regulation of this system is actually more complex and may involve a novel set of genes. Those preliminary efforts were based on in silico methods that are at times limited in power, so it is now paramount to perform high precision gene mapping to validate our newly discovered loci, and to identify previously overlooked loci. In the current project, we will accomplish those crucial tasks by testing our central hypothesis: that the GSH system is regulated by genetic variation within i) canonical GSH genes, including Gr and Gpx-1, and ii) novel genes, such as the RAR-related orphan receptor α (Rorα), whose functions are external to the basic GSH system, and whose number we expect to exceed that of canonical GSH genes. We will test the hypothesis with a strategy that couples a forward genetics approach with the innovative Diversity Outbred (DO) mouse stock, which models the genetic diversity found in humans, and a reverse genetics approach based on novel mouse models created with CRISPR/Cas9 technology. We will address the following specific aims: 1) to quantify the heritability of core GSH phenotypes in a genetically diverse population; 2) to define genomic regions associated with the GSH system, and delineate shared and tissue-specific loci; and 3) to prioritize candidate genes, and initiate functional analyses of the most compelling candidates. These studies will define the fundamental genetic architecture of an indispensable biochemical system that governs cellular stress resistance and survival. Knowledge gained from these efforts will inform a series of future clinical and mechanistic studies aimed at understanding the impact of GSH genes on cellular damage during stress, and the data will build a foundation for innovative therapies to maintain tissue integrity in patients with degenerative diseases, thereby increasing their health spans and improving their qualities of life.
项目总结/摘要 内源性抗氧化剂谷胱甘肽(GSH)赋予细胞抵抗应激,维持生存, 并适当调节基本信号通路。组织内的GSH水平,以及 其还原和氧化形式的比例,似乎是先天的,表明真核生物继承了 合成和代谢GSH的相对能力。尽管有这种明显的遗传效应, GSH系统的调节仍然不明确。相反,知识目前仅限于一小部分 许多典型的GSH基因,如谷胱甘肽还原酶(Gr)和谷胱甘肽过氧化物酶-1(Gpx-1)。 我们的初步研究表明,该系统的遗传调控实际上更为复杂, 涉及一组新的基因。这些初步的努力是基于计算机模拟方法,有时是有限的 因此,现在最重要的是进行高精度的基因定位,以验证我们新发现的基因座, 并确定以前被忽视的位点。在本项目中,我们将通过以下方式完成这些关键任务: 验证我们的中心假设:GSH系统受i)典型GSH内的遗传变异调节 基因,包括Gr和Gpx-1,和ii)新基因,如RAR相关孤儿受体α(Rorα),其 功能是外部的基本GSH系统,其数量,我们预计将超过规范 GSH基因。我们将用一种策略来检验这一假设,该策略将正向遗传学方法与 创新的多样性远交(DO)小鼠种群,它模拟了人类的遗传多样性, 基于CRISPR/Cas9技术创建的新型小鼠模型的反向遗传学方法。我们将 解决了以下具体目标:1)量化核心GSH表型的遗传性,在遗传学上, 2)定义与GSH系统相关的基因组区域,并描绘共享和 组织特异性位点; 3)优先考虑候选基因,并启动最引人注目的功能分析 候选人这些研究将确定一种不可或缺的生化物质的基本遗传结构, 控制细胞抗应激和存活的系统。从这些努力中获得的知识将为 一系列未来的临床和机制研究,旨在了解GSH基因对细胞的影响, 这些数据将为创新疗法奠定基础,以保持组织的完整性, 患有退行性疾病的患者,从而增加他们的健康寿命并改善他们的生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Pazdro其他文献

Robert Pazdro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Pazdro', 18)}}的其他基金

A Systems Approach to GDF11 and its Effects on Cardiac Hypertrophy
GDF11 的系统方法及其对心脏肥大的影响
  • 批准号:
    9565041
  • 财政年份:
    2017
  • 资助金额:
    $ 29.18万
  • 项目类别:
Defining the Genetic Architecture of the Glutathione Redox System
定义谷胱甘肽氧化还原系统的遗传结构
  • 批准号:
    10223353
  • 财政年份:
    2017
  • 资助金额:
    $ 29.18万
  • 项目类别:
Defining the Genetic Architecture of the Glutathione Redox System
定义谷胱甘肽氧化还原系统的遗传结构
  • 批准号:
    9978898
  • 财政年份:
    2017
  • 资助金额:
    $ 29.18万
  • 项目类别:
Genetic Regulation of Glutathione Redox Balance in Mice
小鼠谷胱甘肽氧化还原平衡的遗传调控
  • 批准号:
    8310323
  • 财政年份:
    2012
  • 资助金额:
    $ 29.18万
  • 项目类别:
Genetic Regulation of Glutathione Redox Balance in Mice
小鼠谷胱甘肽氧化还原平衡的遗传调控
  • 批准号:
    8479130
  • 财政年份:
    2012
  • 资助金额:
    $ 29.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了