Subcellular RNA-Proteome Mapping in Subtype- and Circuit-Specific Growth Cones: Development, Cell Biology, Disease, and Regeneration
亚型和电路特异性生长锥中的亚细胞 RNA 蛋白质组图谱:发育、细胞生物学、疾病和再生
基本信息
- 批准号:9354029
- 负责人:
- 金额:$ 118.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyAutistic DisorderBiochemistryBipolar DisorderBrainCaliberCell NucleusCellsCellular biologyDevelopmentDiseaseDisease modelFunctional disorderGeneticGenetic TranscriptionGenomicsGrowth ConesHumanHuntington DiseaseIntellectual functioning disabilityInvestigationKnowledgeLabelMass Spectrum AnalysisModelingModificationMolecularMolecular MachinesNatural regenerationNeuronsNeurosciencesParentsParkinson DiseasePathway interactionsPeptidesPeripheral NervesPharmaceutical PreparationsProtein AnalysisProteinsProteomeProteomicsRNARNA analysisRiskSchizophreniaSorting - Cell MovementSpecificitySpinal cord injurySubcellular structureSynapsesTherapeuticTranscriptTranscriptional RegulationWorkbaseexperimental studyinduced pluripotent stem cellinnovationneuronal cell bodyneuropsychiatric disordernext generation sequencingnovel strategiesparticlepresynaptic
项目摘要
An overarching, central question in all of neuroscience is the specificity, modification, and function of the immense
diversity of function-specific circuitry– a question still inaccessible in multiple core aspects. This is what underlies how
the brain-nervous system senses, integrates, moves the body, thinks, functions with precision, malfunctions with
specificity in disease, degenerates with circuit specificity, might be regenerated, and/or might be modeled in culture. What
actually implements and maintains circuit specificity is a key, core issue from developmental specificity of circuits, to
developmental abnormalities, to proper function (or dysfunction) and circuit type-specific molecular regulators, to
subtype-specific degeneration (e.g. in ALS, Huntington's, Parkinson's diseases), to regeneration (or typical lack thereof)
in the CNS for spinal cord injury or with optimal accuracy in the PNS, to mechanistic and therapeutic modeling of disease
using iPS/ES-derived neurons. Growth cones (GCs) “build” circuits and mature into synapses, where human genomic risk
associations are showing up in neuropsychiatric diseases such as schizophrenia, autism, bipolar disorder, developmental
intellectual disabilities. I propose uniquely enabling, pioneering work on these issues– now possible by our innovative
approaches. We are now able to directly investigate molecular machinery of distinct GC subtypes, thus distinct circuits.
Despite their importance, we know little about the diversity and specialization of circuit-specific GCs– the subcellular
molecular machines that implement specific circuit wiring, mature with precision into presynaptic halves of immensely
diverse synapses, and control the long-standing “sorting problem”. GCs perform these functions over many days of
development for each pathway, often 103-105 cell body diameters away from the nucleus and transcriptional control.
Remarkably, but rarely considered, one nucleus, with one transcriptional regulatory machinery, can control 2 or more
divergent GCs to wire multi-target circuitry. I propose entirely new, highly innovative, pioneering work in development,
cell biology, disease, and regeneration (also relevant to modeling) to uniquely address this critical gap in knowledge.
We developed new approaches to investigate subtype- and stage-specific GCs directly from brains, with high-depth,
quantitative proteomic and RNA analysis, and have already completed proof-of-concept experiments enabling a range of
pioneering new work. We selectively purify GCs based on neuron subtype, projection trajectory, and developmental stage
using a combination of molecular, anatomic, and genetic labeling strategies; subcellular biochemistry; newly developed
small-particle sorting; peptide mass spectrometry; and Next Gen sequencing. Simultaneous isolation of protein and RNA
from parent somas and their GCs identifies hundreds of proteins and transcripts enriched orders of magnitude in GCs,
essentially not detected in parent somas. This indicates that investigation of GCs might actually be required to understand
subtype-specific circuitry. GCs appear to be “programmed” early, then “poised” to exert quite autonomous local control.
I propose ambitious and venturesome investigations of subtype-, stage-, and target-specific GC proteins and RNAs in
multiple specific settings to study mechanisms of development, cell biology, disease, regeneration, & iPS/ES models. These
directions range from immediate, to ~5 yrs, to an ~10 yr horizon. Results will generate new hypotheses and investigations.
在所有神经科学中,一个首要的中心问题是巨细胞的特异性、修饰和功能
功能特定的电路的多样性--这是一个在多个核心方面仍然无法解决的问题。这就是为什么
大脑神经系统感知、整合、移动身体、思考、精确运作、
疾病中的特异性,与电路特异性一起退化,可以再生,和/或可以在培养中建模。什么
实际实现和维护电路的专用性是一个关键、核心的问题,从电路的发展专用性,到
发育异常,到正常的功能(或功能障碍)和电路类型特定的分子调节器,到
亚型特异性变性(如在肌萎缩侧索硬化症、亨廷顿病、帕金森病中),到再生(或典型的缺乏)
对于脊髓损伤的CNS或在PNS中的最佳准确性,到疾病的机械和治疗模型
使用iPS/ES来源的神经元。生长锥体(GC)“构建”环路并成熟为突触,人类基因组在突触中存在风险
在精神分裂症、自闭症、双相情感障碍、发育性疾病等神经精神疾病中都出现了关联。
智力障碍。我建议在这些问题上开展独特的、开创性的工作--现在可以通过我们的创新
接近了。我们现在能够直接研究不同GC亚型的分子机制,从而研究不同的电路。
尽管它们很重要,但我们对电路特异性GC--亚细胞--的多样性和专门化知之甚少
实现特定电路连接的分子机器,以精确的方式成熟为极大的突触前半部分
多样化的突触,并控制了长期存在的“分类问题”。GCS在许多天的时间里执行这些功能
发育的每个途径,往往103-105细胞体直径远离细胞核和转录控制。
值得注意的是,但很少有人考虑到,一个核,带有一个转录调控机制,可以控制两个或更多
分散的GC连接多目标电路。我提出了全新的、高度创新的、开创性的发展工作,
细胞生物学、疾病和再生(也与建模相关),以独特地解决知识中的这一关键差距。
我们开发了新的方法来直接从大脑中研究特定亚型和特定阶段的GC,具有高深度,
定量蛋白质组和RNA分析,并已经完成了概念验证实验,使一系列
开拓性的新工作。我们根据神经元亚型、投射轨迹和发育阶段选择性地提纯GC
使用分子、解剖和遗传标记策略的组合;亚细胞生物化学;新开发的
小颗粒分选;多肽质谱学;下一代测序。蛋白质和RNA的同时分离
从母公司SoMAS及其GC中鉴定出数百种蛋白质和转录产物在GC中富含数量级,
基本上没有在父SoMAS中检测到。这表明,实际上可能需要对GC进行调查,以了解
子类型特定的电路。GCS似乎很早就被“编程”,然后“准备”施加相当自主的本地控制。
我建议对亚型、阶段和靶标特定的GC蛋白和RNA进行雄心勃勃和大胆的研究
多个特定环境,研究发育机制、细胞生物学、疾病、再生和iPS/ES模型。这些
方向从即刻到约5年,到约10年的水平。结果将产生新的假设和调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D MACKLIS其他文献
JEFFREY D MACKLIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D MACKLIS', 18)}}的其他基金
Subcellular mechanisms of subtype-specific neuron vulnerability in ALS and FTD: dysregulation of synapse-localized RNA, protein, and translation in mouse models and human cortico-spinal assembloids
ALS 和 FTD 中亚型特异性神经元脆弱性的亚细胞机制:小鼠模型和人类皮质脊髓组合体中突触定位 RNA、蛋白质和翻译的失调
- 批准号:
10716562 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Development and Diversity of Callosal Projection Neurons
胼胝体投射神经元的分子发育和多样性
- 批准号:
10117292 - 财政年份:2020
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Development and Diversity of Callosal Projection Neurons
胼胝体投射神经元的分子发育和多样性
- 批准号:
10359210 - 财政年份:2020
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Development and Diversity of Callosal Projection Neurons
胼胝体投射神经元的分子发育和多样性
- 批准号:
10558466 - 财政年份:2020
- 资助金额:
$ 118.3万 - 项目类别:
Subcellular RNA-Proteome Mapping in Subtype- and Circuit-Specific Growth Cones: Development, Cell Biology, Disease, and Regeneration
亚型和电路特异性生长锥中的亚细胞 RNA 蛋白质组图谱:发育、细胞生物学、疾病和再生
- 批准号:
9751406 - 财政年份:2017
- 资助金额:
$ 118.3万 - 项目类别:
Subcellular RNA-Proteome Mapping in Subtype- and Circuit-Specific Growth Cones: Development, Cell Biology, Disease, and Regeneration
亚型和电路特异性生长锥中的亚细胞 RNA 蛋白质组图谱:发育、细胞生物学、疾病和再生
- 批准号:
10223443 - 财政年份:2017
- 资助金额:
$ 118.3万 - 项目类别:
Molecular development and diversity of callosal projection neurons
胼胝体投射神经元的分子发育和多样性
- 批准号:
9224046 - 财政年份:2016
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Mechanisms of CTIP2 Function in Corticospinal Motor Neuron Development
CTIP2在皮质脊髓运动神经元发育中功能的分子机制
- 批准号:
8998073 - 财政年份:2012
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Mechanisms of CTIP2 Function in Corticospinal Motor Neuron Development
CTIP2在皮质脊髓运动神经元发育中功能的分子机制
- 批准号:
8606666 - 财政年份:2012
- 资助金额:
$ 118.3万 - 项目类别:
Molecular Mechanisms of CTIP2 Function in Corticospinal Motor Neuron Development
CTIP2在皮质脊髓运动神经元发育中功能的分子机制
- 批准号:
8372817 - 财政年份:2012
- 资助金额:
$ 118.3万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 118.3万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 118.3万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 118.3万 - 项目类别:
Studentship














{{item.name}}会员




