High throughput sample delivery method for time resolved studies of enzyme reactions with X-ray and complementary techniques
高通量样品输送方法,用于利用 X 射线和补充技术进行酶反应的时间分辨研究
基本信息
- 批准号:9427682
- 负责人:
- 金额:$ 54.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-16 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsActive SitesAreaBiochemical ReactionBiologicalBiological SciencesBiologyBlood capillariesChemical ModelsChemicalsChemistryCollectionCrystallographyDataData CollectionDepositionDetectionDevelopmentDoseDropsDrug InteractionsElectronsEnzymesEvolutionExposure toFutureGasesIn SituIndividualIndustrializationInjection of therapeutic agentJapanLasersLightLiquid substanceMeasurementMethodsModificationNeckOxidation-ReductionPerformancePharmaceutical PreparationsPhysiologic pulsePhysiologicalPopulationProcessRadiation induced damageReactionResearchResolutionRestRoentgen RaysSamplingSchemeScienceSourceSpectrum AnalysisStimulusStructureSynchrotronsSystemTechniquesTemperatureTestingThermodynamicsTimeTransducersX ray diffraction analysisX-Ray Diffractionbasebiological systemscapillarychemical propertycryogenicselectrical potentialenzyme modelenzyme structureenzyme substrateexperienceexperimental studyinsightinstrumentationmetalloenzymemultimodalityoperationprotein structurestructural biologysuccesssynchrotron radiationtemperature jumptoolx-ray free-electron laser
项目摘要
Project Summary/Abstract
The advent of the X-ray free electron lasers (XFELs) like the Linac Coherent Light Source (LCLS) at
Stanford has the potential to revolutionize the field of structural studies of biological systems. It is now possible
using the XFELs to determine the structures of enzymes and follow their reactions in real time, at room
temperature. These unprecedented capabilities will open new fields of research, not only in biological sciences
but also in other areas. One bottle-neck in the use of the XFELs has been the lack of a robust method to
introduce the sample into the X-ray interaction region in a continuous manner as the samples are destroyed
after exposure to just one pulse of X-rays, and at the same time minimize the amount of biological sample
used, which are often only available in small quantities. Moreover, it is imperative to be able to trigger the
reactions, by some method, such as using a substrate/chemical compound, or some other stimulus such as
light, or by a temperature jump, or electrical potential so that we can follow the reaction as it happens in real
time, in order to be able to understand how the enzyme functions. This proposal deals with exploring and
constructing robust and versatile sample delivery and reaction triggering methods. Also, when combined with
complementary techniques like spectroscopy and other methods in situ, both global structures and chemical
properties of enzymes can be obtained concurrently, providing insights into the interplay between the protein
structure/dynamics and chemistry at an active site. We will focus on the development of drop-on-demand
methods, mostly based on an acoustic transducer, that will substantially diminish or eliminate any sample
wastage which is a problem with the more commonly used capillary based sample delivery methods that also
have other problems such as clogging that are eliminated with an acoustic droplet ejector. We propose to
develop methods for depositing the drops on a moving support, such as a tape or wheel, that can circulate and
is self-cleaning, for non-stop continuous operation at the XFEL. There we can use the X-ray pulses to study the
intermediate states in enzymes that will be generated by substrate (liquid/gas) activation, which covers most of
the enzymatic reactions. Other triggering methods such as light, or temperature jump, or an electric potential
that will be used to study redox active enzyme systems, will be built-in into our sample delivery system.
Several methods for enzyme-substrate mixing will be tested, with emphasis on liquid-liquid mixing with micron
size droplet collision methods to achieve faster time resolution that can be followed by subsequent time-
evolution before the X-ray probe.
项目总结/摘要
X射线自由电子激光器(XFEL)的出现,如直线加速器相干光源(LCLS),
斯坦福大学有可能彻底改变生物系统结构研究领域。现在可以
使用XFEL来确定酶的结构,并在室温下真实的时间内跟踪它们的反应,
温度这些前所未有的能力将开辟新的研究领域,不仅在生物科学领域,
而且在其他领域也是如此。使用XFEL的一个瓶颈是缺乏一种可靠的方法,
当样品被破坏时,以连续的方式将样品引入X射线相互作用区域
在暴露于X射线的一个脉冲之后,同时最小化生物样品的量,
使用,这往往是只有在小数量。此外,必须能够触发
反应,通过某种方法,如使用底物/化合物,或一些其他刺激,如
光,或者温度的跳跃,或者电势,这样我们就可以跟踪真实的反应
时间,以便能够了解酶的功能。该提案涉及探索和
构建稳健且通用的样品递送和反应触发方法。此外,当与
补充技术,如光谱学和其他方法在现场,无论是全球结构和化学
酶的性质可以同时获得,提供了对蛋白质之间的相互作用的见解,
结构/动力学和化学活性位点。我们将重点发展按需点播
方法,主要是基于声换能器,这将大大减少或消除任何样品,
浪费是更常用的基于毛细管的样品输送方法的问题,
还存在其它问题,例如通过声学液滴喷射器消除的堵塞。我们建议
开发用于将液滴沉积在可循环的移动支撑物(例如带或轮)上的方法,
是自清洁的,用于XFEL的不间断连续操作。在那里我们可以用X射线脉冲来研究
酶中的中间状态,将由底物(液体/气体)活化产生,这涵盖了大多数酶的活性。
酶反应。其他触发方法,如光、温度突变或电势
将用于研究氧化还原活性酶系统,将内置到我们的样品输送系统中。
将测试几种用于酶-底物混合的方法,重点是用微米进行液-液混合
尺寸液滴碰撞方法,以实现更快的时间分辨率,可以随后的时间-
X射线探测器之前的进化
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan F Kern其他文献
Jan F Kern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan F Kern', 18)}}的其他基金
High throughput sample delivery method for time resolved studies of enzyme reactions with X-ray and complementary techniques
高通量样品输送方法,用于利用 X 射线和补充技术进行酶反应的时间分辨研究
- 批准号:
10645032 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
High throughput sample delivery method for time resolved studies of enzyme reactions with X-ray and complementary techniques
高通量样品输送方法,用于利用 X 射线和补充技术进行酶反应的时间分辨研究
- 批准号:
10446972 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 54.89万 - 项目类别:
Discovery Grants Program - Individual