Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery

光学散射成像系统用于保乳手术中手术标本边缘评估

基本信息

  • 批准号:
    9211221
  • 负责人:
  • 金额:
    $ 52.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Breast conserving surgery is routinely offered for localized breast malignancies, but has a known problem of uncertainty about if the entire cancer has been removed. Today, approximately one third of all patients are recalled for a second re-excision because either residual cancer or DCIS was found on the specimen surface or within 1-2 mm of it, when analyzed in pathology in the days after the initial procedure. There is a need for an accurate surgeon assist device, which can determine the potential that the resected specimen is clear of cancer at the margins. This can be directly solved through a technological solution which is optimized for wide- field and volumetric scanning, coupled with computer-aided decision making. In this academic-industry partnership, wide-field optical scatter spectroscopic imaging is coupled to volumetric CT scanning of specimens, in a package which integrates a substantial pre-clinical experience by the PerkinElmer team, with substantial prototyping and clinical specimen imaging work of the Dartmouth team. Scatter imaging allows surface scanning through high-spatial frequency imaging of the tissue, which negates erroneous signals from blood, fluid or ink on the tissue surface, which is critically important for fast in situ imaging o large tissue fields. This will be coupled with fast volumetric CT imaging in integrated display software. The surface molecular- structural features are key to identifying potential cancer regions for the surgeon, as is the volumetric CT key to identifying the internal tracks of the cancer which were seen on mammography and can be used to help identify which faces of the specimen are closest to the internal lesion. The combined system will be completed in the first few years, and tested for training data sets on known tissue samples from the breast lesion tissue bank. Following validation, a prospective trial will be carried out on the system, to help determine the accuracy in margin identification. Taken together this will be one of the first comprehensive approaches to volumetric and surface scanning in a single package, and comes from two groups with substantial experience in the aspects of cancer imaging and system development.
 描述(由申请人提供):保乳手术通常用于局部乳腺恶性肿瘤,但已知的问题是不确定是否已切除整个癌症。今天,大约三分之一的患者被召回进行第二次再次切除,因为在初次手术后的几天内进行病理学分析时,在标本表面或其1-2 mm范围内发现了残留癌或DCIS。需要一种精确的外科医生辅助装置,其可以确定切除的标本在边缘处没有癌症的可能性。这可以通过针对宽场和体积扫描进行优化的技术解决方案以及计算机辅助决策来直接解决。在这个学术界和工业界的合作伙伴关系中,宽场光学散射光谱成像与标本的体积CT扫描相结合,在一个包中集成了PerkinElmer团队的大量临床前经验,以及达特茅斯团队的大量原型和临床标本成像工作。散射成像允许通过组织的高空间频率成像进行表面扫描,这消除了来自组织表面上的血液、流体或墨水的错误信号,这对于大组织野的快速原位成像至关重要。这将与集成显示软件中的快速体积CT成像相结合。表面分子结构特征是外科医生识别潜在癌症区域的关键,因为体积CT是识别乳房X线摄影上看到的癌症内部轨迹的关键,并且可以用于帮助识别样本的哪些面最接近内部病变。该组合系统将在最初几年完成,并在来自乳腺病变组织库的已知组织样本上测试训练数据集。验证后,将对系统进行前瞻性试验,以帮助确定边缘识别的准确性。总之,这将是第一个全面的方法,体积和表面扫描在一个单一的包,并来自两个小组在癌症成像和系统开发方面的大量经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KEITH D. PAULSEN其他文献

KEITH D. PAULSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KEITH D. PAULSEN', 18)}}的其他基金

Training in Surgical Innovation
外科创新培训
  • 批准号:
    10205062
  • 财政年份:
    2017
  • 资助金额:
    $ 52.49万
  • 项目类别:
Training in Surgical Innovation
外科创新培训
  • 批准号:
    9280049
  • 财政年份:
    2017
  • 资助金额:
    $ 52.49万
  • 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
  • 批准号:
    8840807
  • 财政年份:
    2015
  • 资助金额:
    $ 52.49万
  • 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
  • 批准号:
    9020962
  • 财政年份:
    2015
  • 资助金额:
    $ 52.49万
  • 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
  • 批准号:
    8837214
  • 财政年份:
    2014
  • 资助金额:
    $ 52.49万
  • 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
  • 批准号:
    9121345
  • 财政年份:
    2014
  • 资助金额:
    $ 52.49万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8738671
  • 财政年份:
    2013
  • 资助金额:
    $ 52.49万
  • 项目类别:
Molecular Fluorescence-Guided Surgery Platform
分子荧光引导手术平台
  • 批准号:
    8649029
  • 财政年份:
    2013
  • 资助金额:
    $ 52.49万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8660174
  • 财政年份:
    2013
  • 资助金额:
    $ 52.49万
  • 项目类别:
Advancing molecular fluorescence-guided surgery platform
先进的分子荧光引导手术平台
  • 批准号:
    10598545
  • 财政年份:
    2013
  • 资助金额:
    $ 52.49万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了