Novel approaches for studying topoisomerase 2 targeting anti-cancer drugs
研究靶向抗癌药物的拓扑异构酶 2 的新方法
基本信息
- 批准号:9306402
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseATPase DomainAdoptedAffectAffinityAllelesAntineoplastic AgentsBindingBiochemicalBiochemistryBiological AssayC-terminalCell DeathCellsCharacteristicsClinicalCollaborationsComplexCrystallizationCytotoxic agentDNADNA BindingDNA DamageDNA Double Strand BreakDNA RepairDNA StructureDNA TopoisomerasesDNA strand breakDimerizationDoxorubicinDrug HypersensitivityDrug InteractionsDrug TargetingDrug effect disorderDrug resistanceEctopic ExpressionEnzymesEtoposideExhibitsGenerationsGenetic TranscriptionGoalsHumanHydrolysisHypersensitivityLeadLesionLocationMediatingMitoxantroneModelingMolecularMolecular ConformationMutationNamesPharmaceutical PreparationsPlasmidsPoisonPoisoningProcessProtein IsoformsProteinsRAD52 geneReactionReagentResearchResolutionResourcesSiteTestingTopoisomeraseTopoisomerase IITransducersUniversitiesWorkYeastsbasecancer cellcell typechemotherapeutic agentcytotoxicitydimerdrug sensitivityenzyme activityexperimental studyinsightinterestkillingsmutantneurotensin mimic 2novelnovel strategiesoverexpressionphosphodiesterpreventprogramsrepairedresponsescreeningsmall moleculetargeted agenttumor
项目摘要
The long-term goal of our research program is to provide a biochemical and molecular blueprint for the action
of anti-cancer drugs that target DNA topoisomerase 2 (Top2). Top2 carries out changes in DNA structure
needed for efficient transcription, replication, and DNA repair. These enzymes introduce transient double
strand breaks in DNA through a protein/DNA covalent intermediate termed the cleavage complex. This
intermediate allows cells to catalyze changes in DNA conformation without the dangers of frank DNA double
strand breaks. Anti-cancer drugs such as etoposide and doxorubicin generate elevated levels of cleavage
complexes, leading to cytotoxicity. The biochemical details of trapping Top2 covalent complexes remain poorly
understood. We devised a variety of approaches for developing novel reagents for studying Top2/drug
interactions. One key strategy is to isolate and characterize mutants in eukaryotic Top2 with altered drug
sensitivity. Classically, studying drug/protein interactions is facilitated by the identification of drug resistant
mutant proteins. However, this approach has proven unsatisfactory for topoisomerases, since any mutations
that reduce enzyme activity typically confer high levels of drug resistance. We have adopted two alternate
approaches. First, we devised screens for the identification of drug hypersensitive alleles of Top2. This
approach used ectopic expression of human Top2 enzymes (both Top2α and Top2β isoforms have been
functionally expressed in yeast) with screening for alleles that conferred elevated levels of sensitivity to
etoposide. We identified a large number of mutants with greatly elevated levels of sensitivity to etoposide. In
our proposed experiments, we will carry out biochemical analyses of the hypersensitive alleles. One class of
mutant alleles that is of great interest is mutants in the Top2 ATPase domain. Current models suggest that
etoposide interacts with the protein at the protein/DNA interface. Therefore, the mutants we have identified in
the ATPase domain likely regulate progression through the catalytic cycle rather than directly affect
drug/protein interactions. How the enzyme regulates progression through the catalytic cycle, and how this
progression affects drug binding and action remains poorly understood. A second approach is based on
recently identified mutants of yeast Top2 that require cells be proficient in DNA repair for viability. Biochemical
analysis of the purified mutant proteins demonstrated elevated levels of drug independent DNA cleavage.
Therefore, the mutant Top2 mimics the action of Top2 poisons and are termed self-poisoning Top2 mutants.
We expanded this observation to human Top2, and have identified several self-poisoning mutations in human
Top2α. We hypothesize that these mutants will also have elevated levels of drug independent DNA cleavage.
Biochemical and structural analysis of these mutants will lend unique insights into the processes of DNA
cleavage and religation by human Top2 proteins. Taken together, our work will provide unique reagents and
insights into the action of anti-cancer drugs that target Top2.
我们研究计划的长期目标是为这种行为提供生化和分子蓝图
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN L NITISS其他文献
JOHN L NITISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN L NITISS', 18)}}的其他基金
Genome Instability induced in cancer cells carrying mutations in Type II topoisomerases
携带 II 型拓扑异构酶突变的癌细胞诱导基因组不稳定性
- 批准号:
10358979 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
Genome Instability induced in cancer cells carrying mutations in Type II topoisomerases
携带 II 型拓扑异构酶突变的癌细胞诱导基因组不稳定性
- 批准号:
10542782 - 财政年份:2021
- 资助金额:
$ 8万 - 项目类别:
相似海外基金
CRYSTAL STRUCTURE OF ADP COMPLEX OF ATPASE DOMAIN OF CHAPERONE HSC66
伴侣HSC66的ATP酶域ADP复合物的晶体结构
- 批准号:
6119556 - 财政年份:1999
- 资助金额:
$ 8万 - 项目类别:














{{item.name}}会员




