Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
基本信息
- 批准号:9518200
- 负责人:
- 金额:$ 13.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAllelesAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAmericasAndroidChronic DiseaseClinicalDataDatabasesDementiaDevelopmentDietDietary InterventionDietary intakeDiseaseEquilibriumFamily CaregiverFamily history ofFood PreferencesFrequenciesGeneticGenetic Predisposition to DiseaseGenetic RiskGenomeGenotypeGoalsGuidelinesHealthLifeLife StyleMachine LearningMissionNeurodegenerative DisordersNutrientNutritionalOutcomePathologyPatternPhasePhenotypePhysical activityPopulationPrevention GuidelinesPreventive healthcareProcessRecommendationRiskStatistical ModelsSymptomsTranslatingbasecostcost effectivedesigndigitaldisorder preventionevidence basefightingfitnessgenetic variantlifestyle interventionmobile applicationmobile computingmortalitynutritionnutritional genomicsphysical conditioningpreventrisk varianttool
项目摘要
Genben Lifesciences (dba GB HealthWatch) is a digital health and nutritional genomics company. Our
mission is to help fight common, diet- and lifestyle-related chronic diseases with precision nutrition and
advanced mobile technologies. Our company developed the HealthWatch 360 mobile app for tracking
dietary intake, physical activity and health-related symptoms. This mobile app has received excellent
reviews for both the iOS and Android platforms and has over 70,000 registered users. Health condition-
specific goals featured in the app provide refined nutritional recommendations based on clinical
guidelines for the prevention of diet-induced, chronic diseases. Alzheimer’s disease (AD) is the leading
cause of dementia in the U.S., the 6th leading cause of mortality and a major cost to the nation, families
and caregivers. This phase I proposal is for the development of a mobile tool that will deliver
personalized nutrition and meal plans based on genetic risk in order to mitigate AD risk.
Aim 1: Develop a systematic process to identify specific dietary and nutritional components
associated with AD. Using the 1000 Genomes Phase 3 database and nutritional analyses of the
traditional diets that correspond with the 26 populations, we will analyze whether specific nutrients
correlate with the frequency of genetic variants that predispose risk of AD. We hypothesize that a
population’s fitness would be enhanced and AD risk would be lower when the genetic variants that are
selected for in a given population are in equilibrium with a diet that is enriched or depleted with the
correlated nutrient(s). We will develop statistical models that will quantify these relationships.
Aim 2: Translate nutritional patterns to a set of quantitative recommendations for AD prevention.
With the nutrient data we obtain from Aim 1, combined with other evidence-based nutrition guidelines
for AD, we will synthesize a set of qualitative and quantitative nutritional “rules” based on the app user’s
genotypes, family history of AD and other health conditions. These genotype- and/or phenotype -
specific rules will estimate ideal ranges for a given nutrient and amend the conventional “rules” (i.e.
nutritional recommendations) by the 2015-2020 Dietary Guidelines for America.
Aim 3: Mobile app for delivery of personalized meal plan for the prevention of AD. This mobile
application is designed for guided, proactive and self-executed prevention of AD, and targeted at those
who are at elevated risk. We propose developing machine-learning algorithms to create meal plans that
employ the modified nutrient ranges (from Aims 1 and 2) for a given AD risk genotype. Users will be able
to modify food preference parameters (for example, “vegetarian”) while maintaining the appropriate
nutrient ranges.
A key outcome of this project will be a platform that supports population-wide dietary intervention by
seamlessly connecting preventive healthcare with daily life in the digital age.
Genben Lifesciences(dba GB HealthWatch)是一家数字健康和营养基因组学公司。我们
使命是通过精准营养帮助抗击常见的、与饮食和生活方式相关的慢性疾病,
先进的移动的技术。我们公司开发了HealthWatch 360移动的应用程序,
饮食摄入、体力活动和健康相关症状。这款移动的应用获得了优秀的
iOS和Android平台的评论,拥有超过70,000名注册用户。健康状况-
应用程序中的特定目标提供了基于临床的精细营养建议
预防饮食引起的慢性疾病的指南。阿尔茨海默病(AD)是主要的
在美国痴呆症的原因,第六大死亡原因和国家的主要成本,家庭
和照顾者。第一阶段的建议是开发一个移动的工具,
基于遗传风险的个性化营养和膳食计划,以减轻AD风险。
目标1:制定一个系统的程序,以确定特定的饮食和营养成分
与AD有关。使用1000个基因组第三阶段数据库和营养分析,
与26个人群相对应的传统饮食,我们将分析特定的营养素
与易患AD的遗传变异频率相关。我们假设
当遗传变异被消除时,人群的适应性将得到增强,AD风险将降低。
在给定的人群中选择的食物与富含或耗尽的饮食平衡,
相关营养素。我们将开发统计模型来量化这些关系。
目标2:将营养模式转化为一套预防AD的定量建议。
利用我们从Aim 1中获得的营养数据,结合其他循证营养指南,
对于AD,我们将根据应用程序用户的
基因型、AD家族史和其他健康状况。这些基因型和/或表型-
具体的规则将估计给定营养素的理想范围,并修改传统的“规则”(即,
2015-2020年美国膳食指南(Dietary Guidelines for America)
目标3:移动的应用程序,用于提供预防AD的个性化膳食计划。这个移动的
应用程序旨在引导,主动和自我执行的预防AD,并针对那些
高危人群我们建议开发机器学习算法来创建膳食计划,
采用针对给定AD风险基因型的修改的营养范围(来自目标1和2)。用户将能够
修改食物偏好参数(例如,“素食”),同时保持适当的
营养范围。
该项目的一个关键成果将是一个支持全民饮食干预的平台,
将预防性医疗保健与数字时代的日常生活无缝连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Shen其他文献
Li Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Shen', 18)}}的其他基金
Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
- 批准号:
9254310 - 财政年份:2016
- 资助金额:
$ 13.31万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Continuing Grant














{{item.name}}会员




