A computational approach for understanding locomotor learning post-stroke
理解中风后运动学习的计算方法
基本信息
- 批准号:9246583
- 负责人:
- 金额:$ 22.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeArthralgiaAwardBiomechanicsBiomedical EngineeringBiometryBrainClinicalComputer SimulationDataDependencyDevelopmentDoctor of PhilosophyEnsureEquilibriumFall preventionFundingGaitGoalsHumanImpairmentIndividualInterventionKnowledgeLearningLegLifeMathematicsMediatingMentorsMentorshipMissionModelingMotionMovementNeurologyNeuropsychologyNeurosciencesOne-Step dentin bonding systemOutcomeOutputPatient EducationPatientsPhysical activityPhysicsPositioning AttributePublic HealthQuality of lifeRehabilitation therapyResearchResearch PersonnelRestSpecific qualifier valueSpeedStrokeTechniquesTestingTimeUnited States National Institutes of HealthUpdateWalkingWorkbasecareercareer developmentcomputer frameworkexperienceexperimental studyfootgait rehabilitationimprovedindexinginnovationinterestkinematicsmathematical modelmotor controlmotor learningmusculoskeletal injurynervous system disorderpost strokepublic health relevancestroke rehabilitationstroke survivortreadmillvisual feedbackwalking speed
项目摘要
DESCRIPTION (provided by applicant): Step asymmetry post-stroke (i.e., limp) substantially affects the quality of life of stroke survivors because it impairs patients' mobility, thereby limiing their daily activities and increasing their dependency on others. Consequently, a primary interest for patients, clinicians, and researchers is to correct the step asymmetry in stroke survivors. Promising studies show that patients can re-learn to walk symmetrically if their step asymmetry is exaggerated with a split-belt treadmill that moves the legs at different speeds. While these results are encouraging, gait improvements are highly contextual and do not persist when walking over ground. To address this critical issue for gait rehabilitation, the PI is proposing a combination of computational and experimental approaches to identify key factors regulating the generalization of locomotor learning after stroke. The PI's central hypothesis is that inherent features from one's movement (e.g., kinematic errors and walking speed) regulate the generalization of locomotor learning. This hypothesis was formulated on the basis of the PI's preliminary data showing more generalization of treadmill learning to over ground walking when kinematic errors or walking speed during split-belt adaptation are similar to those naturally experienced. In the proposed computational approach, model inputs are errors that subjects experience during split-belt walking (for example, unexpected leg motions disturbing one's balance), model outputs are actions to correct these errors (for example, a larger step to prevent falling). The mathematical relationship between inputs and outputs is used to predict the effect of error size (Aim 1) and walking speed (Aim 2) on the generalization of learning in an individual basis. Once factors mediating the generalization of learning are identified, they can be
harnessed to develop interventions that improve the gait of stroke survivors during real-life situations. PI qualifications: the PI is a prolific and creative bioengineer. Her first class trainng in physics, biomechanics, and neuroscience, in addition to her strong interest in rehabilitation make her the adequate individual for doing the proposed work. Her studies in human motor control are well recognized (>700 citations; h-index 11) in a relatively short, but highly productive academic career. Through this award she will receive mentorship from two extraordinary investigators with complementary expertise: Michael Boninger, MD, PhD. (clinical rehabilitation) and Reza Shadmehr, PhD (computational motor control). They will serve as primary co-mentors. In addition the PI will receive mentorship from an expert panel of collaborators including Dr. Subashan Perera (biostatistics), Dr. Steven Graham (neurology), Dr. Julie Fiez (neuropsychology) and Dr. Skidmore (post-stroke rehabilitation). Thus, this award will provide the mentorship and career development allowing the PI to become an independent researcher able to compete for R01-level funding to study gait deficits post-stroke through computational modeling.
描述(申请人提供):卒中后台阶不对称(即跛行)严重影响中风幸存者的生活质量,因为它损害了患者的行动能力,从而限制了他们的日常活动,并增加了他们对他人的依赖。因此,患者、临床医生和研究人员的主要兴趣是纠正卒中幸存者的台阶不对称。有希望的研究表明,如果用分体式跑步机以不同的速度移动双腿,夸大患者的步幅不对称性,患者可以重新学习对称行走。虽然这些结果令人鼓舞,但步态的改善是高度相关的,在地面上行走时不会持续下去。为了解决步态康复的这一关键问题,PI提出了一种计算和实验相结合的方法,以确定调节中风后运动学习泛化的关键因素。PI的中心假设是,一个人的运动固有特征(例如,运动学错误和行走速度)调节着运动学习的概括性。这一假说是基于PI的初步数据提出的,该数据显示,当分带适应过程中的运动学错误或步行速度与自然经历的运动错误或步行速度相似时,跑步机学习更普遍地适用于地面步行。在提出的计算方法中,模型输入是受试者在分带行走过程中经历的错误(例如,意外的腿部运动扰乱了一个人的平衡),模型输出是纠正这些错误的行动(例如,防止跌倒的更大步骤)。输入和输出之间的数学关系被用来预测误差大小(目标1)和行走速度(目标2)对个体基础上的学习泛化的影响。一旦确定了调节学习泛化的因素,它们就可以
开发干预措施,改善中风幸存者在现实生活中的步态。PI资质:PI是一位多产且富有创造力的生物工程师。她在物理、生物力学和神经科学方面的第一堂课训练,再加上她对康复的浓厚兴趣,使她成为做这项拟议工作的合适人选。她在人类运动控制方面的研究在相对较短但富有成效的学术生涯中得到了很好的认可(>;700篇引用;h-index 11)。通过这个奖项,她将得到两位具有互补专业知识的非凡研究人员的指导:迈克尔·博宁格,医学博士,博士。Reza Shadmehr博士(计算机运动控制)。他们将担任主要的共同导师。此外,PI还将接受专家小组的指导,合作者包括Subashan Perera博士(生物统计学)、Steven Graham博士(神经学)、Julie Fiez博士(神经心理学)和Skinmore博士(中风后康复)。因此,该奖项将提供指导和职业发展,使PI成为一名独立研究人员,能够竞争R01级别的资金,通过计算建模研究中风后的步态缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gelsy Torres-Oviedo其他文献
Gelsy Torres-Oviedo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 22.44万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 22.44万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 22.44万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 22.44万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 22.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 22.44万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 22.44万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 22.44万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 22.44万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 22.44万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




