Mechanisms of Intracellular trafficking and endosomal escape of nanoparticles for mRNA delivery
用于 mRNA 递送的纳米粒子的细胞内运输和内体逃逸机制
基本信息
- 批准号:9232538
- 负责人:
- 金额:$ 44.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:AblationActive SitesArtificial nanoparticlesBiogenesisBrainCaveolaeCell membraneCellsCellular biologyClathrinClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesComplexConfocal MicroscopyCustomDevelopmentDiseaseDrug TargetingEndocytic VesicleEndocytosisEndocytosis PathwayEndosomesEngineeringEnhancersFamilyFoundationsFutureGene DeliveryGene ExpressionGene SilencingGenesGeneticGoalsHaploid CellsImageryInvestigationKineticsLeadLibrariesLipidsLysosomesMalignant NeoplasmsMammalian CellMeasuresMediatingMessenger RNAMethodsMicroscopyModern MedicineMonitorMonomeric GTP-Binding ProteinsNeurodegenerative DisordersNucleic AcidsOpticsOrganellesOutcomePathway interactionsPermeabilityPharmaceutical PreparationsProcessProductionPropertyProteinsRNARecyclingResolutionRouteSignal TransductionSiteSorting - Cell MovementSurfaceSystemTechniquesTechnologyTestingTherapeuticTherapeutic AgentsTracerTreatment EfficacyVesiclebasecyanine dye 5improvedinhibitor/antagonistinsightlipid mediatorlipid transportnanoparticlenovelprotein expressionreconstructionscreeningsmall hairpin RNAsmall moleculespatiotemporaltherapeutic proteintooltraffickingtreatment groupuptake
项目摘要
Project Summary:
RNA therapeutics represents a new class of modern medicine for targets considered undruggable.
Nanoparticle based platforms remain the most advanced in clinical trials for RNA based drugs. Yet, the
lack of mechanistic insights into the cellular trafficking and endosomal escape of nanoparticles has
become a major hurdle for efficient intracellular delivery. Nanoparticles enter cells through highly
dynamic endocytic pathways that are routed towards lysosomes for degradation. This study aims to 1)
Determine the gateways of cellular entry and subsequent itinerary of lipid nanoparticles (LNP) that
deliver messenger RNA (mRNA) inside cells through the use of state of the art microscopy techniques
in combination with different markers of endocytosis and/or inhibitors of select trafficking pathways 2)
Dissect the productive sites for endosomal escape by utilizing an CRISPR/Cas9 and/or shRNA based
library targeted against endosomal proteins, that direct nanoparticles towards the early, recycling, late
or lysosomal routes of delivery. The disruption of key steps in endocytic trafficking will trigger release of
nanoparticles from vesicular confinement and reveal the active sites for endosomal escape 3) Identify
bioactive lipids that improve escape from productive endocytic compartments. These lipids were
selected based on their properties of influencing cell membrane dynamics, cell signaling and
enrichment into the endo/lysosomal system that can trigger endosomal escape. In these studies
custom-built 3D stochastic optical reconstruction microscopy (3D-STORM) and 3D multi-resolution
microscopy (3D-MM) will be employed to visualize endosomal escape and identify triggers that improve
cytosolic delivery. Our preliminary investigation using super-resolution microscopy reveals transport of
LNP delivered nucleic acids with very high spatiotemporal resolution. Using genetically altered cells we
were able to pinpoint key stages of LNP mediated mRNA delivery. Novel bioactive lipids that can
improve intracellular delivery of mRNA have also been identified and are being interrogated for their
ability to breach endosomal barriers. Our goal is to unlock the mechanisms of carrier-mediated
intracellular delivery, unravel productive sites of endosomal escape and identify bioactive lipids that can
enable intracellular mRNA delivery that will, in the future, lead to efficient production of therapeutic
proteins for the treatment of various devastating disorders. Our long-term plan is to build a firm basic
foundation, which enables further development and optimization of novel nanoparticles to overcome
cellular barriers and reach drug targets.
项目概要:
RNA therapeutics represents a new class of modern medicine for targets considered undruggable.
Nanoparticle based platforms remain the most advanced in clinical trials for RNA based drugs.然而,
lack of mechanistic insights into the cellular trafficking and endosomal escape of nanoparticles has
become a major hurdle for efficient intracellular delivery.纳米粒子通过高度进入细胞
dynamic endocytic pathways that are routed towards lysosomes for degradation.本研究的目的是 1)
Determine the gateways of cellular entry and subsequent itinerary of lipid nanoparticles (LNP) that
deliver messenger RNA (mRNA) inside cells through the use of state of the art microscopy techniques
in combination with different markers of endocytosis and/or inhibitors of select trafficking pathways 2)
Dissect the productive sites for endosomal escape by utilizing an CRISPR/Cas9 and/or shRNA based
library targeted against endosomal proteins, that direct nanoparticles towards the early, recycling, late
或溶酶体递送途径。 The disruption of key steps in endocytic trafficking will trigger release of
nanoparticles from vesicular confinement and reveal the active sites for endosomal escape 3) Identify
bioactive lipids that improve escape from productive endocytic compartments.这些脂质是
selected based on their properties of influencing cell membrane dynamics, cell signaling and
enrichment into the endo/lysosomal system that can trigger endosomal escape.在这些研究中
定制 3D 随机光学重建显微镜 (3D-STORM) 和 3D 多分辨率
microscopy (3D-MM) will be employed to visualize endosomal escape and identify triggers that improve
胞质传递。 Our preliminary investigation using super-resolution microscopy reveals transport of
LNP delivered nucleic acids with very high spatiotemporal resolution.我们利用基因改造细胞
were able to pinpoint key stages of LNP mediated mRNA delivery.新型生物活性脂质可以
improve intracellular delivery of mRNA have also been identified and are being interrogated for their
突破内体屏障的能力。我们的目标是解锁载体介导的机制
intracellular delivery, unravel productive sites of endosomal escape and identify bioactive lipids that can
enable intracellular mRNA delivery that will, in the future, lead to efficient production of therapeutic
用于治疗各种破坏性疾病的蛋白质。我们的长远计划是打牢基础
foundation, which enables further development and optimization of novel nanoparticles to overcome
细胞屏障并达到药物靶点。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA.
- DOI:10.1021/acs.nanolett.7b02664
- 发表时间:2017-09-13
- 期刊:
- 影响因子:10.8
- 作者:Patel S;Ashwanikumar N;Robinson E;DuRoss A;Sun C;Murphy-Benenato KE;Mihai C;Almarsson Ö;Sahay G
- 通讯作者:Sahay G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaurav Sahay其他文献
Gaurav Sahay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaurav Sahay', 18)}}的其他基金
Mechanistic insights on structure, topology and radiation effects on RNA nanomedicines
RNA纳米药物的结构、拓扑和辐射效应的机理见解
- 批准号:
10587705 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10522389 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10707472 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10250546 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10058049 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10563195 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
9898461 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10360481 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




