Mechanisms of Intracellular trafficking and endosomal escape of nanoparticles for mRNA delivery
用于 mRNA 递送的纳米粒子的细胞内运输和内体逃逸机制
基本信息
- 批准号:9232538
- 负责人:
- 金额:$ 44.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:AblationActive SitesArtificial nanoparticlesBiogenesisBrainCaveolaeCell membraneCellsCellular biologyClathrinClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesComplexConfocal MicroscopyCustomDevelopmentDiseaseDrug TargetingEndocytic VesicleEndocytosisEndocytosis PathwayEndosomesEngineeringEnhancersFamilyFoundationsFutureGene DeliveryGene ExpressionGene SilencingGenesGeneticGoalsHaploid CellsImageryInvestigationKineticsLeadLibrariesLipidsLysosomesMalignant NeoplasmsMammalian CellMeasuresMediatingMessenger RNAMethodsMicroscopyModern MedicineMonitorMonomeric GTP-Binding ProteinsNeurodegenerative DisordersNucleic AcidsOpticsOrganellesOutcomePathway interactionsPermeabilityPharmaceutical PreparationsProcessProductionPropertyProteinsRNARecyclingResolutionRouteSignal TransductionSiteSorting - Cell MovementSurfaceSystemTechniquesTechnologyTestingTherapeuticTherapeutic AgentsTracerTreatment EfficacyVesiclebasecyanine dye 5improvedinhibitor/antagonistinsightlipid mediatorlipid transportnanoparticlenovelprotein expressionreconstructionscreeningsmall hairpin RNAsmall moleculespatiotemporaltherapeutic proteintooltraffickingtreatment groupuptake
项目摘要
Project Summary:
RNA therapeutics represents a new class of modern medicine for targets considered undruggable.
Nanoparticle based platforms remain the most advanced in clinical trials for RNA based drugs. Yet, the
lack of mechanistic insights into the cellular trafficking and endosomal escape of nanoparticles has
become a major hurdle for efficient intracellular delivery. Nanoparticles enter cells through highly
dynamic endocytic pathways that are routed towards lysosomes for degradation. This study aims to 1)
Determine the gateways of cellular entry and subsequent itinerary of lipid nanoparticles (LNP) that
deliver messenger RNA (mRNA) inside cells through the use of state of the art microscopy techniques
in combination with different markers of endocytosis and/or inhibitors of select trafficking pathways 2)
Dissect the productive sites for endosomal escape by utilizing an CRISPR/Cas9 and/or shRNA based
library targeted against endosomal proteins, that direct nanoparticles towards the early, recycling, late
or lysosomal routes of delivery. The disruption of key steps in endocytic trafficking will trigger release of
nanoparticles from vesicular confinement and reveal the active sites for endosomal escape 3) Identify
bioactive lipids that improve escape from productive endocytic compartments. These lipids were
selected based on their properties of influencing cell membrane dynamics, cell signaling and
enrichment into the endo/lysosomal system that can trigger endosomal escape. In these studies
custom-built 3D stochastic optical reconstruction microscopy (3D-STORM) and 3D multi-resolution
microscopy (3D-MM) will be employed to visualize endosomal escape and identify triggers that improve
cytosolic delivery. Our preliminary investigation using super-resolution microscopy reveals transport of
LNP delivered nucleic acids with very high spatiotemporal resolution. Using genetically altered cells we
were able to pinpoint key stages of LNP mediated mRNA delivery. Novel bioactive lipids that can
improve intracellular delivery of mRNA have also been identified and are being interrogated for their
ability to breach endosomal barriers. Our goal is to unlock the mechanisms of carrier-mediated
intracellular delivery, unravel productive sites of endosomal escape and identify bioactive lipids that can
enable intracellular mRNA delivery that will, in the future, lead to efficient production of therapeutic
proteins for the treatment of various devastating disorders. Our long-term plan is to build a firm basic
foundation, which enables further development and optimization of novel nanoparticles to overcome
cellular barriers and reach drug targets.
项目摘要:
RNA疗法代表了一类新的现代医学,其目标被认为是不可治疗的。
基于纳米颗粒的平台仍然是基于RNA的药物的临床试验中最先进的。然而
由于缺乏对纳米颗粒的细胞运输和内体逃逸的机理认识,
成为有效细胞内递送的主要障碍。纳米颗粒通过高密度的
动态内吞途径,其被路由到溶酶体以进行降解。本研究旨在:(1)
确定脂质纳米颗粒(LNP)进入细胞的通道和随后的行程,
通过使用最先进的显微技术在细胞内传递信使RNA(mRNA)
与内吞作用的不同标记物和/或选择运输途径的抑制剂组合2)
通过利用基于CRISPR/Cas9和/或shRNA的基因工程技术,
针对内体蛋白质的文库,将纳米颗粒导向早期,再循环,晚期
或溶酶体递送途径。内吞运输中关键步骤的中断将触发
从囊泡限制的纳米颗粒,并揭示内体逃逸的活性位点3)识别
改善从生产性内吞区室逃逸的生物活性脂质。这些脂质是
基于它们影响细胞膜动力学、细胞信号传导和细胞增殖的性质进行选择。
富集到内体/溶酶体系统中,其可触发内体逃逸。在这些研究中
定制的3D随机光学重建显微镜(3D-STORM)和3D多分辨率
显微镜(3D-MM)将用于可视化内体逃逸,并确定改善内体逃逸的触发因素。
胞质递送。我们使用超分辨率显微镜进行的初步研究显示,
LNP以非常高的时空分辨率递送核酸。使用基因改变的细胞,
能够精确定位LNP介导的mRNA递送的关键阶段。新的生物活性脂质,
也已经鉴定了mRNA改善的细胞内递送,并正在研究其
突破内体屏障的能力。我们的目标是解开载体介导的
细胞内递送,解开内体逃逸的产生位点,并鉴定可
使细胞内mRNA的传递,这将在未来导致有效的生产治疗,
用于治疗各种破坏性疾病的蛋白质。我们的长期计划是建立一个坚实的基础,
基金会,这使得进一步开发和优化新的纳米粒子,以克服
细胞屏障和到达药物靶点。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA.
- DOI:10.1021/acs.nanolett.7b02664
- 发表时间:2017-09-13
- 期刊:
- 影响因子:10.8
- 作者:Patel S;Ashwanikumar N;Robinson E;DuRoss A;Sun C;Murphy-Benenato KE;Mihai C;Almarsson Ö;Sahay G
- 通讯作者:Sahay G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaurav Sahay其他文献
Gaurav Sahay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaurav Sahay', 18)}}的其他基金
Mechanistic insights on structure, topology and radiation effects on RNA nanomedicines
RNA纳米药物的结构、拓扑和辐射效应的机理见解
- 批准号:
10587705 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10522389 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10707472 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10250546 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10058049 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10563195 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
9898461 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10360481 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




