Understanding Long Tail Driver Mutations in Cancer
了解癌症中的长尾驱动基因突变
基本信息
- 批准号:9238972
- 负责人:
- 金额:$ 39.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-06 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAllelesBiologicalBiological Response Modifier TherapyCancer PatientCellsClinicalClinical ResearchClinical TrialsComputing MethodologiesCoupledDataDiseaseEligibility DeterminationEnrollmentFoundationsFrequenciesGene TargetingGenesGeneticGenomeGenomic approachGenotypeGoalsImpairmentIn complete remissionIndividualInstitutionInstitutional Review BoardsKnowledgeLaboratoriesLeadLesionLinkMalignant NeoplasmsMeasuresMediator of activation proteinMemorial Sloan-Kettering Cancer CenterMethodsMolecularMolecular AbnormalityMutationOncogenesOutcomePatient CarePatient-Focused OutcomesPatientsPharmaceutical PreparationsPhenotypePopulationPrecision therapeuticsProto-Oncogene Proteins c-aktRecurrenceSomatic MutationStructureSurveysTailTherapeuticTherapeutic TrialsTimeValidationactionable mutationbiomarker selectioncancer carecancer genomecancer therapyclinical careclinical phenotypeclinical sequencingclinical translationclinically actionablecohortcomputer frameworkdesigndosagedrug sensitivityeffective therapyexome sequencingflexibilityimprovedin vitro Modelinhibitor/antagonistinnovationinterdisciplinary approachmolecular phenotypemutantnovelnovel therapeutic interventiononcologypatient populationphenotypic dataprospectiveresponsetargeted treatmenttherapeutic targettranslational genomicstreatment responsetumor
项目摘要
PROJECT SUMMARY/ABSTRACT
The transition to genomically driven oncology has begun, catalyzed in part by efforts to rationally design
effective therapies targeting the specific molecular aberrations on which individual tumors depend. This has
led, inexorably, to the prospective clinical sequencing of patients with active disease to guide their cancer care.
Nevertheless, a fundamental gap remains. The shift toward larger panel and whole exome sequencing has led
to the identification of increasing numbers of somatic mutations in even presumed actionable cancer genes,
the vast majority of which are in the so-called long right tail and lack biological or clinical validation. This
significantly impairs our ability to use findings generated by prospective profiling to guide patient care. We have
recently shown that such long-tail driver mutations can be the genetic basis of extraordinary responses to
systemic cancer therapy. We went on to show that a systematic survey utilizing population-scale cancer
genome data coupled to computational methodologies reveals similar long-tail drivers of both biological and
therapeutic significance. These findings underscore the importance of long-tail driver mutations in cancer, but
without a systematic approach for rapidly prioritizing and functionally and clinically validating these somatic
mutations, the gap in our understanding of the clinically actionable genome will widen. We propose to
overcome this urgent clinical challenge by establishing a robust and sophisticated framework for elucidating
novel driver mutations in the long tail. We will first establish a comprehensive computational framework that
identifies and prioritizes long-tail driver mutations that leverages not only population-scale data but integrates
orthogonal measures of selection. We will then apply these methods to a cohort of greater than 50,000
prospectively sequenced active cancer patients at our Center, all possessing detailed clinical, outcome, and
treatment response data, results from which can lead to the enrollment of patients on genotype-directed clinical
trials. Finally, we will perform functional studies of novel long-tail driver mutations revealed by these analyses
in genes for which there is an open basket study at our institution, thereby establishing a co-clinical framework
by which laboratory functional validation can be paired with patient treatment response. Together, these
studies seek to establish a computational-experimental framework for identifying functional mutations in the
long tail that expand the treatment options for molecularly defined populations of cancer patients.
项目总结/摘要
向基因组驱动的肿瘤学的过渡已经开始,部分原因是合理设计
针对个体肿瘤所依赖的特定分子畸变的有效疗法。这
无情地导致了对活动性疾病患者的前瞻性临床测序,以指导他们的癌症护理。
然而,一个根本性的差距仍然存在。向更大的面板和整个外显子组测序的转变导致了
到甚至在假定的可作用的癌症基因中鉴定越来越多的体细胞突变,
其中绝大多数是在所谓的长右尾,缺乏生物学或临床验证。这
显著削弱了我们使用前瞻性分析所产生的发现来指导患者护理的能力。我们有
最近表明,这种长尾驱动突变可能是对
全身癌症治疗。我们继续表明,一项利用人口规模癌症的系统调查
结合计算方法的基因组数据揭示了生物学和生物学的类似长尾驱动因素,
治疗意义这些发现强调了长尾驱动突变在癌症中的重要性,
如果没有一种系统的方法来快速优先化和功能性和临床验证这些体细胞
突变,我们对临床可操作基因组的理解的差距将扩大。我们建议
通过建立一个强大而复杂的框架来阐明
长尾中的新驱动突变。我们将首先建立一个全面的计算框架,
识别并优先考虑长尾驱动突变,不仅利用人口规模的数据,
选择的正交措施。然后,我们将这些方法应用于超过50,000人的队列
前瞻性测序的活动性癌症患者在我们的中心,所有拥有详细的临床,结果,
治疗反应数据,其结果可导致患者入组基因型导向的临床试验
审判最后,我们将对这些分析揭示的新型长尾驱动突变进行功能研究
在我们机构进行的开放篮子研究中,
实验室功能验证可与患者治疗反应配对。所有这些
研究试图建立一个计算-实验框架,用于识别基因组中的功能突变。
长尾,扩大了分子定义的癌症患者群体的治疗选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry Stephen Taylor其他文献
Barry Stephen Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry Stephen Taylor', 18)}}的其他基金
Research Project 1: Understanding the Molecular Evolution of Castration-Resistant Prostate Cancer
研究项目1:了解去势抵抗性前列腺癌的分子进化
- 批准号:
9148031 - 财政年份:2001
- 资助金额:
$ 39.21万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Research Grant