Functional Interplay of Lipid Membrane Components: Activation, Inhibition, and Raft Formation
脂膜成分的功能相互作用:激活、抑制和筏形成
基本信息
- 批准号:9751321
- 负责人:
- 金额:$ 34.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlzheimer&aposs DiseaseAntibiotic ResistanceBehaviorBinding SitesBiologicalBiological AssayBiological ProcessBurkholderia pseudomalleiCardiolipinsCellular MembraneCholesterolCommunicationDiseaseEnvironmentEtiologyGEM geneHIVHealthHeart DiseasesHumanLipid BilayersLipid BindingLipidsMembraneMembrane LipidsMembrane MicrodomainsMembrane ProteinsNatureOrganismParkinson DiseasePathogenesisPharmacologic SubstancePhaseProcessProteinsResearchResolutionSignal TransductionSiteSterolsStructureTherapeuticTransport ProcessVirulenceimprovedinterestmembrane assemblynovelpathogenic bacteriaprogramsproteoliposomessaturated fatsolid state nuclear magnetic resonance
项目摘要
We will determine how the lipid bilayer organizes around membrane proteins to regulate vital biological
functions, including signal transduction and molecular transport. Many lipids and membrane proteins associate
to form platforms called lipid rafts, which are phase-separated from the surrounding membrane. The dynamic
structure and functional importance of these intermediate-sized (5-200 nm), non-crystalline assemblies are
difficult to characterize. Many pathogenic bacteria organize lipid rafts which can increase virulence and
antibiotic resistance. In humans, rafts form to facilitate multiple signaling processes. These processes are, in
turn, involved in the pathogenesis of diseases, including Alzheimer’s, Parkinson’s, and heart disease. Atomic-
resolution dynamic structural details of these assemblies will broaden our understanding of signaling
processes and inform disease etiology. We will confront this problem using solid-state NMR (SSNMR) and
functional assays in proteoliposomes and biological membranes. Our research program is built around three
thematic thrusts: (1) To understand how the lipid environment regulates membrane proteins site-specifically.
(2) To determine how membrane proteins, in turn, order their environment. (3) To determine the degree of
long-range order and dynamic timescales of these membrane assemblies. Our first target is the KirBac1.1
prokaryotic inward-rectifier K+ (Kir) channel and an array of functional lipids, including synthetic lipids and
biological lipid extracts, known to associate with rafts. KirBac1.1 shares many behaviors with eukaryotic Kir
channels. It is activated by anionic lipids (especially cardiolipin) and has a high affinity for saturated lipids,
cholesterol, and other lipid microdomain-forming components (including hopanoids from the native organism
Burkholderia Pseudomallei). The shared regulatory and structural features between KirBac1.1 and eukaryotic
Kir channels have inspired several topics of interest: (a) How does the lipid cardiolipin maximally activate
KirBac1.1 and trigger transmembrane allostery? Cardiolipin is an essential functional lipid throughout nature,
and understanding membrane allostery will inform not only the mechanism of K+ conductance, but the means
of transmembrane communications. (b) What is the locus and mechanism of cholesterol/hopanoid induced
channel activation? Understanding this is key to determining both how sterols regulate proteins and how they
contribute to bilayer organization. (c) How do functional lipid binding sites nucleate rafts? Cardiolipin,
cholesterol, and hopanoids are all associated with modulating protein activity and membrane organization; our
aim is to understand how they create protein-lipid and lipid-lipid interactions in this process. (d) How does the
organization of the annular/nonannular lipid shell act as a secondary regulator of membrane proteins? Kir
channels are inactivated by cholesterol, but have a high affinity for rafts. How do cellular membranes organize
such that Kir channels can be in rafts, yet retain activity? (e) What is the long-range order and lifetime of these
assemblies? It is still unknown if these assemblies persist on the timescale of signaling processes.
我们将确定脂质双分子层如何在膜蛋白周围组织以调节重要的生物活性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin James Wylie其他文献
Benjamin James Wylie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin James Wylie', 18)}}的其他基金
The Functional Interplay of Lipid Membrane Components: Activation, Inhibition, and Raft Formation.
脂质膜成分的功能相互作用:激活、抑制和筏形成。
- 批准号:
10623780 - 财政年份:2017
- 资助金额:
$ 34.99万 - 项目类别:
Functional Interplay of Lipid Membrane Components: Activation, Inhibition, and Raft Formation
脂膜成分的功能相互作用:激活、抑制和筏形成
- 批准号:
10220069 - 财政年份:2017
- 资助金额:
$ 34.99万 - 项目类别:
Functional Interplay of Lipid Membrane Components: Activation, Inhibition, and Raft Formation
脂膜成分的功能相互作用:激活、抑制和筏形成
- 批准号:
9382509 - 财政年份:2017
- 资助金额:
$ 34.99万 - 项目类别:
Functional Interplay of Lipid Membrane Components: Activation, Inhibition, and Raft Formation
脂膜成分的功能相互作用:激活、抑制和筏形成
- 批准号:
9978891 - 财政年份:2017
- 资助金额:
$ 34.99万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid-State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
7677663 - 财政年份:2009
- 资助金额:
$ 34.99万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid-State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
8055358 - 财政年份:2009
- 资助金额:
$ 34.99万 - 项目类别:
Structural and Functional Studies of Potassium Channels by Solid-State NMR
通过固态核磁共振研究钾通道的结构和功能
- 批准号:
7799771 - 财政年份:2009
- 资助金额:
$ 34.99万 - 项目类别: