Cell free nucleic acid-based biomarkers in advanced prostate cancer
晚期前列腺癌中基于无细胞核酸的生物标志物
基本信息
- 批准号:9751257
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-12-16
- 项目状态:已结题
- 来源:
- 关键词:AblationAlgorithmsAndrogensBiologicalBiological AssayBiological MarkersBiological ModelsBloodBody FluidsCancer Cell GrowthCancer PatientCastrationCell CountCellsClinicalDNADNA sequencingDevelopmentDisease ProgressionFDA approvedFailureGenesGenomicsGrowthHigh-Throughput Nucleotide SequencingHormonalHormonesHumanIn VitroIndividualKnowledgeLaboratoriesMalignant neoplasm of prostateMedicineMetastatic Prostate CancerMicroRNAsMolecularMolecular AbnormalityMutationNeoplasm Circulating CellsNucleic AcidsNude MiceOutcomePainPatient-Focused OutcomesPatientsPerformancePlasmaPlasma CellsPrediction of Response to TherapyPredictive FactorPrognostic FactorPrognostic MarkerProgression-Free SurvivalsQuantitative Reverse Transcriptase PCRRNAReportingResistanceReverse Transcriptase Polymerase Chain ReactionTechnologyTestingTimeTreatment ProtocolsTumor BurdenTumor-DerivedUnfavorable Clinical OutcomeValidationandrogen deprivation therapybasecancer recurrencecastration resistant prostate cancercell free DNAchemotherapycirculating microRNAcohortdesigndigitaldocetaxeleffective therapyin vivoliquid biopsymicroRNA biomarkersoutcome forecastpatient responsepre-clinicalprecision medicinepredicting responseprediction algorithmpredictive markerpredictive modelingpredictive testpredictive toolsprognosticprognostic assaysprognostic performanceprognostic toolprospectiveprostate cancer cellprostate cancer modelprostate cancer progressionresearch clinical testingresponsetranscriptome sequencingtreatment responsetumortumor growthtumor progressiontumor xenograftwhole genome
项目摘要
PROJECT SUMMARY
Metastatic hormone-sensitive prostate cancer is treated with androgen deprivation therapy and after progression
to the castration-resistant prostate cancer stage, with additional forms of hormonal ablation and/or with
chemotherapy. These treatments slow tumor progression by a certain period and decrease the pain and
suffering from disease progression. However, there is no clinical feature or molecular test that can reliably predict
these treatment responses or clinical outcomes in advanced prostate cancer. A predictive feature or biomarker
which is defined as a factor determining which patients will do well with a specific type of treatment. This is
distinct from molecular prognostic biomarkers which provide information about clinical outcome regardless of
therapy used. Knowledge of predictive factors that identify cohorts of patients destined for response (versus
failure) of these therapies is critically needed to develop precision medicine strategies. Recently, the assessment
of tumor-derived cell free nucleic acids in body fluids has shown promise in being able to capture tumor genomic
and genetic abnormalities in cancer patients. This approach is often referred to as “liquid biopsy”. We believe
that cell free nucleic acids can be used as biomarkers to reliably predict treatment response and clinical
outcomes, and will therefore be informative in designing an appropriate treatment regimen. We have previously
examined plasma cell free nucleic acids for miRNA abundance and somatic DNA changes in patients with
advanced prostate cancer. We observed a significant association of high plasma miRNAs (miR-375 and miR-
1290) with poor overall survival. We also observed that tumor-derived genomic/genetic alterations in plasma cell
free DNAs were associated with tumor burden and reflected patients' responses to stage-specific treatments.
Aim 1 of this study is to identify and validate key circulating miRNA-based predictive and prognostic biomarkers
in four well annotated prostate cancer cohorts. Aim 2 is to establish circulating cell free DNA-based predictive
and prognostic biomarkers in four well annotated prostate cancer cohorts. Aim 3 is to functionally characterize
the potential of the key candidate miRNAs in promoting growth and resistance of prostate cancer cells to
androgen deprivation therapy or chemotherapy in vitro and in vivo. The proposed studies are highly significant
and timely, as the circulating cell free nucleic acid-based biomarkers will not only help clinicians in selecting the
most effective treatment options, but also provide important clues regarding mechanisms that underlie prostate
cancer progression and recurrence.
项目摘要
转移性前列腺癌敏感性前列腺癌接受雄激素剥夺治疗,进展后
至去势抵抗性前列腺癌阶段,与其他形式的激素消融和/或与
化疗这些治疗将肿瘤进展减缓一定时间,并减少疼痛,
患有疾病进展。然而,没有临床特征或分子测试可以可靠地预测
这些治疗反应或晚期前列腺癌的临床结果。预测特征或生物标志物
其被定义为确定哪些患者将在特定类型的治疗中表现良好的因素。这是
与提供关于临床结果的信息的分子预后生物标志物不同,
使用的治疗。了解可识别预期缓解患者队列的预测因素(与
这些疗法的失败)是迫切需要开发精确的医学策略。最近,评估
在体液中的肿瘤衍生的无细胞核酸已经显示出能够捕获肿瘤基因组的希望,
和基因异常的癌症患者。这种方法通常被称为“液体活检”。我们认为
无细胞核酸可用作生物标志物,以可靠地预测治疗反应和临床
结果,因此将在设计适当的治疗方案时提供信息。我们先前已经
检查了血浆细胞游离核酸的miRNA丰度和体细胞DNA的变化,
晚期前列腺癌我们观察到高血浆miRNAs(miR-375和miR-275)与高血浆miRNAs(miR-275和miR-275)之间的显著相关性。
#21290;,总体生存率低。我们还观察到浆细胞中肿瘤源性基因组/遗传改变,
游离DNA与肿瘤负荷相关,反映了患者对分期特异性治疗的反应。
本研究的目的1是鉴定和验证关键的基于循环miRNA的预测和预后生物标志物
在四个很好注释的前列腺癌队列中。目的二是建立基于循环游离细胞DNA的预测模型,
和预后生物标志物。目标3是功能特性
关键候选miRNAs在促进前列腺癌细胞生长和抵抗前列腺癌细胞增殖中的潜力,
雄激素剥夺疗法或化学疗法在体外和体内。拟议的研究非常重要
并且及时,因为基于循环无细胞核酸的生物标志物不仅将帮助临床医生选择合适的生物标志物,
最有效的治疗选择,而且还提供了有关前列腺疾病机制的重要线索,
癌症进展和复发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Kohli其他文献
Manish Kohli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Kohli', 18)}}的其他基金
Digital Multiplexed Analysis of Circulating Nucleic Acids in Small-Volume Blood Specimens
小体积血液样本中循环核酸的数字多重分析
- 批准号:
10467839 - 财政年份:2022
- 资助金额:
$ 10.48万 - 项目类别:
Digital Multiplexed Analysis of Circulating Nucleic Acids in Small-Volume Blood Specimens
小体积血液样本中循环核酸的数字多重分析
- 批准号:
10676313 - 财政年份:2022
- 资助金额:
$ 10.48万 - 项目类别:
Daily Quantification of Cancer-Associated Exosomal miRNA in Patient Blood by Photonic Crystal-Enhanced Quantum Dot Emission
通过光子晶体增强量子点发射对患者血液中癌症相关外泌体 miRNA 进行每日定量
- 批准号:
10362538 - 财政年份:2018
- 资助金额:
$ 10.48万 - 项目类别:
Cell free nucleic acid-based biomarkers in advanced prostate cancer
晚期前列腺癌中基于无细胞核酸的生物标志物
- 批准号:
10240337 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
Cell free nucleic acid-based biomarkers in advanced prostate cancer
晚期前列腺癌中基于无细胞核酸的生物标志物
- 批准号:
9509379 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
Cell free nucleic acid-based biomarkers in advanced prostate cancer
晚期前列腺癌中基于无细胞核酸的生物标志物
- 批准号:
10220351 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
Cell free nucleic acid-based biomarkers in advanced prostate cancer
晚期前列腺癌中基于无细胞核酸的生物标志物
- 批准号:
10471263 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
A Proteomics Approach for Identifying Predictive Factors to Androgen Deprivation
确定雄激素剥夺预测因素的蛋白质组学方法
- 批准号:
7894667 - 财政年份:2009
- 资助金额:
$ 10.48万 - 项目类别:
A Proteomics Approach for Identifying Predictive Factors to Androgen Deprivation
确定雄激素剥夺预测因素的蛋白质组学方法
- 批准号:
7738853 - 财政年份:2009
- 资助金额:
$ 10.48万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant