Exploring the structural basis for 24-hour timekeeping in mammals
探索哺乳动物 24 小时计时的结构基础
基本信息
- 批准号:9753257
- 负责人:
- 金额:$ 47.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAcuteAddressArchitectureBackBehaviorBindingBiochemicalBiological ClocksBiophysicsBrainCardiovascular DiseasesCell LineCell modelCellsChIP-seqChronicCircadian RhythmsCircadian desynchronyClock proteinComplementComplexCryoelectron MicroscopyDataDevelopmentElectron MicroscopyExposure toFeedbackFundingGene ActivationGeneticGenetic TranscriptionHealthHealth PromotionHourHumanIn VitroJet Lag SyndromeKineticsLightMalignant NeoplasmsMammalsMessenger RNAMetabolic DiseasesModelingMolecularMutation AnalysisNegative StainingPathway interactionsPhasePhysiologyPoint MutationProcessProteinsRegulationRiskRoleStimulusStructureStudy modelsSystemTestingTherapeuticTimeTranslationsWorkbasecircadiancryptochromefeedinggene repressioninsightknockout genemolecular clockmutantoptogeneticsprotein complexresponse
项目摘要
Circadian rhythms are generated by molecular clocks that are universally used to synchronize behavior and
physiology with the 24-hour solar cycle. This proposal seeks to understand the biochemical basis of circadian
timing and photoentrainment, the process by which molecular clocks are aligned to the external light/dark cycle.
In mammals, circadian rhythms arise from set of interlocked transcription feedback loops involving dedicated
clock proteins: at the center of this network, CLOCK:BMAL1 activates transcription of its repressors PERIOD
(PER) and CRYPTOCHROME (CRY), which ultimately feed back to complete a ~24-hour long cycle of gene
activation and repression. Photoentrainment is important to keep molecular clocks on track with environmental
light cycles. Chronic circadian misalignment (i.e. jetlag) leads to increased risk for metabolic disorders,
cardiovascular disease and cancer due to disruption of the systemic control of physiology by circadian rhythms.
While much of the photoentrainment pathway has been laid out from ocular photoreception to its acute induction
of Per mRNA in the master clock of the brain, crucially, the final biochemical steps that execute entrainment on
the molecular level remain completely unknown. Exposure to light before dawn leads to phase advances of the
molecular clock, while light after dusk delays the clock, both of which keep CLOCK:BMAL1 activity aligned with
the day. How does this plasticity in phase shifting arise from the same light-dependent induction of Per mRNA
that occurs at dusk and dawn? ChIP-seq studies provide evidence for distinct repressive complexes that
assemble in the evening, an `early' complex of PER and CRY proteins that assembles at dusk on CLOCK:BMAL1
and a `late' complex of CRY1 bound alone to CLOCK:BMAL1 at dawn. Our central hypothesis is that differences
in the composition of early and late repressive complexes are exploited for entrainment, leading to differential
regulation by light-induced PER2 at dusk and dawn. We will test this with three specific aims. First, the molecular
basis for differences in regulation of CLOCK:BMAL1 by CRY1, CRY2 and PER2 will be defined with biochemical,
biophysical, and cellular studies. Second, structures of early and late repressive complexes will be determined
by cryo-electron microscopy to identify overall changes in molecular architecture of the core clock proteins that
occur throughout the evening. Third, the development of a new optogenetic model for the study of cellular clocks
will allow the identification of biochemical determinants by which clocks are entrained to external stimuli.
Collectively, these lines of study will address how core clock proteins interact throughout the evening in distinct
regulatory complexes to generate circadian timekeeping and respond to external stimuli.
昼夜节律是由分子时钟产生的,分子时钟普遍用于同步行为和
与24小时太阳周期有关的生理学。这项提议试图了解昼夜节律的生物化学基础。
计时和光夹带,分子时钟与外部光/暗周期对齐的过程。
在哺乳动物中,昼夜节律产生于一组相互关联的转录反馈环,涉及专门的
CLOCK蛋白:在这个网络的中心,CLOCK:BMal1激活其抑制物阶段的转录
(PER)和隐花色素(CRY),它们最终反馈完成一个长达24小时的基因循环
激活和压抑。光夹带对于使分子时钟与环境保持一致很重要
光循环。慢性昼夜节律失调(即时差)会增加代谢紊乱的风险,
心血管疾病和癌症,由于昼夜节律扰乱了系统的生理控制。
虽然大部分的光携带途径是从眼睛的光接收到它的急性诱导
在大脑的主时钟中,至关重要的是,执行携带的最终生化步骤
分子水平仍然完全未知。黎明前暴露在光线下会导致
分子时钟,而黄昏后的灯光会延迟时钟,两者都保持时钟:BMal1活性与
这一天。这种相移的可塑性是如何从同样的光依赖诱导的PER-mRNA产生的?
发生在黄昏和黎明之间?CHIP-SEQ研究提供了不同的抑制复合体的证据
在晚上组装,在黄昏时钟组装的PER和CREAT蛋白的‘早’复合体:BMal1
以及一个单独与时钟相结合的CRY1‘Late’复合体:黎明时分的BMal1。我们的中心假设是,差异
在早期和晚期的组成中,抑制复合体被用于夹带,导致差异
在黄昏和黎明,光诱导的PER2的调节。我们将用三个具体目标来测试这一点。首先,分子
时钟调节差异的依据:CRY1、CRY2和PER2的BMal1将用生化来定义,
生物物理学和细胞学研究。第二,将确定早期和晚期抑制复合体的结构
通过冷冻电子显微镜来确定核心时钟蛋白分子结构的整体变化
整个晚上都会发生。第三,为研究细胞时钟开发了一种新的光遗传模型
将允许识别生物化学决定因素,通过这些决定因素,时钟将受到外部刺激的影响。
总的来说,这些研究路线将解决核心时钟蛋白如何在整个晚上以不同的方式相互作用
调节复合体,以产生昼夜计时和对外部刺激的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie L Partch其他文献
Carrie L Partch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carrie L Partch', 18)}}的其他基金
Administrative supplement to promote diversity for MIRA proposal
促进 MIRA 提案多样性的行政补充
- 批准号:
10610195 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
2021 Chronobiology Gordon Research Conference and Gordon Research Seminar
2021年时间生物学戈登研究会议暨戈登研究研讨会
- 批准号:
10237653 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Structures and mechanisms of circadian rhythms from cyanobacteria to humans
从蓝藻到人类的昼夜节律的结构和机制
- 批准号:
10725037 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Structures and mechanisms of circadian rhythms from cyanobacteria to humans
从蓝藻到人类的昼夜节律的结构和机制
- 批准号:
10207193 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Structures and mechanisms of circadian rhythms from cyanobacteria to humans
从蓝藻到人类的昼夜节律的结构和机制
- 批准号:
10621358 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Research Supplement to Promote Diversity in Health-Related Research
促进健康相关研究多样性的研究补充
- 批准号:
10814602 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Structures and mechanisms of circadian rhythms from cyanobacteria to humans
从蓝藻到人类的昼夜节律的结构和机制
- 批准号:
10399570 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Exploring the structural basis for 24-hour timekeeping in mammals
探索哺乳动物 24 小时计时的结构基础
- 批准号:
9026189 - 财政年份:2013
- 资助金额:
$ 47.07万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant














{{item.name}}会员




