Entropy for End-Point and FFT-Based Binding Free Energy Calculations

用于端点和基于 FFT 的结合自由能计算的熵

基本信息

  • 批准号:
    9752373
  • 负责人:
  • 金额:
    $ 33.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Computers are often used to predict how tightly two molecules associate, their binding free energy. These predictions are helpful for designing drugs, predicting the consequences of genetic variation, and understanding how molecules interact to sustain life. Unfortunately, currently available methods are either fast or accurate, but not both. In general, fast methods do a poor job accounting for entropy, which is an important part of the free energy. The main objective of this project is to develop better ways to account for entropy in two popular techniques for studying molecular interactions: “end-point” simulations of the bound complexes and their unbound counterparts; and molecular docking based on the Fast Fourier Transform. Specifically, new ways to analyze calculation results will be derived, implemented, assessed, and optimized. Additionally, the methods will be combined with enhanced sampling techniques. Our new end-point and FFT-based methods will be assessed by their ability to reproduce benchmark results from slower but more accurate computational methods, as well as experimental results. The benchmark dataset will include protein-ligand complexes and protein-protein complexes with known binding affinities and crystal structures, as well as protein-protein complexes for which the effect of missense mutations on binding have been measured. We will also perform benchmark calculations on mutants of the tumor suppressor p53 that gain the ability to activate new proteins and promote tumor growth. In addition to serving as benchmarks, these calculations may provide mechanistic insight into how proteins bind various ligands and how p53 mutants gain new binding partners. Our new methods will also be tested in recurring community challenges: the “Drug Design Data Resource” (D3R) grand challenge to predict protein-ligand complex structures and affinities and the “Critical Assessment of PRediction of Interactions” (CAPRI) challenge for protein-protein structure prediction. These blinded challenges will allow for an unbiased comparison of our methods to those from other research groups. Finally, we will assess our methods in a drug discovery project. We will use established methods and our new methods to virtually screen a chemical library against a pair of structurally similar bacterial metabolic enzymes. One enzyme is relevant to active and the other to dormant bacteria. Compounds predicted to selectively bind the bacterial (opposed to human) enzymes will be experimentally tested in biochemical assays. We anticipate that our improved methods will be significantly more accurate than established approaches, advancing research ranging from interactome prediction to drug discovery.
项目摘要 计算机经常被用来预测两个分子的结合自由能有多紧密。这些 预测有助于设计药物,预测基因变异的后果,以及理解 分子如何相互作用来维持生命。不幸的是,目前可用的方法要么快速要么准确, 但不能两者兼而有之。总体而言,快速方法不能很好地计算熵,而熵是 自由能。这个项目的主要目标是开发更好的方法来解释两个流行的 研究分子相互作用的技术:结合络合物及其相互作用的“终点”模拟 基于快速傅立叶变换的分子对接。SpeciifiCally,新方法 分析计算结果将被派生、实施、评估和优化。此外,这些方法 将与增强的采样技术相结合。 我们的新端点和基于FFT的方法将根据它们再现基准结果的能力进行评估 来自速度较慢但更准确的计算方法以及实验结果。基准数据集 将包括蛋白质-配体复合体和已知结合了fi离子和晶体的蛋白质-蛋白质复合体 结构以及错义突变对结合的影响具有的蛋白质-蛋白质复合体 被测量过了。我们还将对肿瘤抑制基因p53的突变体进行基准计算, 激活新蛋白质并促进肿瘤生长的能力。除了作为基准,这些 计算可能为了解蛋白质如何与各种配体结合以及p53突变体如何获得 新的有约束力的伙伴。 我们的新方法还将在反复出现的社区挑战中进行测试:“药物设计数据资源” (D3R)预测蛋白质-配体复杂结构和Affi的重大挑战和“关键评估 相互作用的预测“(CAPRI)对蛋白质-蛋白质结构预测的挑战。这些盲目的挑战 将允许将我们的方法与其他研究小组的方法进行公正的比较。 最后,我们将在一个药物发现项目中评估我们的方法。我们将使用现有的方法和我们的新方法 方法针对一对结构相似的细菌代谢酶虚拟筛选化学文库。 一种酶与活跃的细菌有关,另一种与休眠细菌有关。预测将选择性结合的化合物 细菌(而不是人类)的酶将在生化分析中进行实验测试。我们期待着 我们改进的方法将明显比现有的方法更准确,从而推动研究 从交互作用组预测到药物发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Do Le Minh其他文献

David Do Le Minh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Do Le Minh', 18)}}的其他基金

Entropy for End-Point and FFT-Based Binding Free Energy Calculations
用于端点和基于 FFT 的结合自由能计算的熵
  • 批准号:
    10204042
  • 财政年份:
    2018
  • 资助金额:
    $ 33.11万
  • 项目类别:
Sound-stage Virtual Screening Based on Implicit Ligand Theory
基于隐式配体理论的声场虚拟筛选
  • 批准号:
    9023233
  • 财政年份:
    2015
  • 资助金额:
    $ 33.11万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 33.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了