Advancing Raman spectroscopy toward the clinical assessment of bone quality
推动拉曼光谱应用于骨质量的临床评估
基本信息
- 批准号:9752446
- 负责人:
- 金额:$ 17.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-30 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Glycosylation End ProductsAgeAmidesAnteriorArchitectureBasic ScienceBiochemicalBiological AssayBone DensityBone DiseasesBone MatrixCadaverCharacteristicsClinicalClinical assessmentsCollagenCollagen Type IDiagnosticDiseaseDistalDual-Energy X-Ray AbsorptiometryEmerging TechnologiesEpidemiologyEvaluationExcisionExtracellular MatrixFatigueFemurFiber OpticsFluorescenceFractureGeometryGlucoseGoalsHandHead and neck structureHumanImageImaging TechniquesIncubatedIndividualLaboratoriesLightLinear ModelsMeasurementMeasuresMechanicsMedialMediatingMethodsMineralsModificationMultivariate AnalysisNatureOpticsPatientsPeriodicityPhasePorosityProcessProlinePropertyRaman Spectrum AnalysisResearchResearch PersonnelResistanceRiskSamplingShapesSideSiteSolubilitySpecificitySpecimenSpectrum AnalysisStructureSystemTechniquesTechnologyTensile StrengthTestingThickTimeTranslatingWaterWorkX-Ray Computed Tomographybasebonebone qualityclinical diagnosticsclinical imagingcortical bonecrosslinkdemineralizationdensityefficacy studyfracture riskinorganic phosphateinstrumentmechanical propertiesmineralizationnotch proteinpolarized lightpre-clinicalpreservationsoft tissuesubstantia spongiosasugartibiatooltrait
项目摘要
Fracture resistance depends on the shape of the whole bone with respect to loading, the microstructure of both
cortical and trabecular bone, and the ultrastructure of the extracellular matrix or the inherent quality of the bone
matrix. While advances in clinical imaging provide measurements of cortical thickness, cortical cross-sectional
geometry, cortical porosity, trabecular micro-architecture, as well as volumetric mineral density and matrix-
bound water (at distal sites), clinical tools are currently not available to assess the contribution of matrix
composition and organization to fracture resistance. Raman spectroscopy (RS) is one technology well suited to
fill this gap in clinical diagnostics of bone because it is i) relatively inexpensive and safe with rapid acquisition
times, ii) sensitive to both the mineral phase and the organic matrix, and iii) easy-to-use in which a hand-held
probe acquires the spectra. There are however several obstacles to overcome in order for RS to provide
clinically meaningful assessments of bone matrix quality: i) identify the best strategy to acquire the Raman
spectra from bone (transcutaneous vs. percutaneous with or without polarization preserving optics) and ii)
determine how to analyze the spectra such that Raman measurements can assess fracture resistance (peak
ratios vs. sub-band peak ratios vs. full spectrum analysis). Addressing these challenges, the project will assess
the ability of RS to predict mechanical properties of human cortical bone and do so with respect to volumetric
bone mineral density (vBMD) and age (Aim 1) and will identify the matrix factors that influence Raman
spectroscopic properties of bone quality (Aim 2). For Aim 1, Raman spectra will be acquired from the medial
side of the tibia mid-shaft near the anterior ridge (shin) using first a spatially offset RS probe, then using a
small fiber optic Raman probe after soft tissue removal, and lastly using a confocal Raman instrument that
preserves polarization of the light. Next, mechanical specimens will be extracted from each cadaveric mid-shaft
as well as the femoral neck and head, imaged by micro-computed tomography to determine vBMD, and then
subjected to tensile testing, fracture toughness testing, or compressive fatigue testing. General linear models
will be used to determine whether Raman properties help age and vBMD explain the variance in strength,
toughness, fracture toughness, and fatigue resistance (i.e., they add value). Based on preliminary work, we
expect a sub-peak ratio within the Amide I to be a predictor of fracture resistance. For Aim 2, pieces of bone
from the mechanical specimens (away from test region) will be demineralized and subjected to biochemical
assays to determine collagen crosslink concentrations, fluorescent advanced glycation end-products (AGEs),
percentage of denatured collagen, and degree of collagen solubility. In addition, Raman spectra will be
acquired before and after AGE accumulation and fatigue loading using separate bone samples (mineralized).
Since the shape of the Amide I band is reflective of the secondary structure of type 1 collagen, we expect sub-
peak ratios to be sensitive to degree of AGE crosslinks and the degree to which the collagen is helical.
抗断裂性取决于整个骨相对于载荷的形状,
皮质骨和松质骨,以及细胞外基质的超微结构或骨的内在质量
矩阵虽然临床成像的进步提供了皮质厚度的测量,但皮质横截面的测量是不准确的。
几何形状、皮质孔隙率、小梁微结构以及体积矿物质密度和基质-
结合水(在远端部位),目前尚无临床工具可用于评估基质的贡献
组成和组织对抗断裂性的影响。拉曼光谱(RS)是一种非常适合于
填补了骨的临床诊断中的这一空白,因为i)相对便宜且安全,
时间,ii)对矿物相和有机基质都敏感,以及iii)易于使用,
探测器获取光谱。然而,为了使RS能够提供
骨基质质量的临床有意义的评估:i)确定获得拉曼光谱的最佳策略,
来自骨的光谱(经皮与经皮,具有或不具有偏振保持光学器件)和ii)
确定如何分析光谱,使得拉曼测量可以评估抗断裂性(峰值
比率与子带峰值比率与全谱分析)。为了应对这些挑战,该项目将评估
RS预测人体皮质骨力学性能的能力,
骨矿物质密度(vBMD)和年龄(目标1),并将确定影响拉曼的基质因素
骨质量的光谱特性(目的2)。对于目标1,将从介质中获取拉曼光谱。
首先使用空间偏移RS探头,然后使用
小光纤拉曼探针,最后使用共焦拉曼仪器,
保持光的偏振。接下来,将从每个尸体中段干中提取力学样本
以及股骨颈和股骨头,通过微型计算机断层扫描成像以确定vBMD,然后
进行拉伸试验、断裂韧性试验或压缩疲劳试验。一般线性模型
将用于确定拉曼特性是否有助于老化和vBMD解释强度的变化,
韧性、断裂韧性和抗疲劳性(即,增加价值)。根据前期工作,我们
预期酰胺I内的亚峰比率是抗断裂性的预测因子。对于目标2,骨块
将对机械样本(远离测试区域)进行脱矿处理,
测定胶原交联浓度、荧光晚期糖基化终产物(AGEs)
变性胶原百分比和胶原溶解度。此外,将对拉曼光谱进行分析。
使用单独的骨样本(矿化)在AGE累积和疲劳负荷之前和之后采集。
由于酰胺I带的形状反映了1型胶原的二级结构,我们预期亚-
峰比对AGE交联的程度和胶原的螺旋程度敏感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffry Stephen Nyman其他文献
Jeffry Stephen Nyman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffry Stephen Nyman', 18)}}的其他基金
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Role of Hypertension in Favoring Osteoporosis
BCCMA:针对和抵抗不利于骨骼的条件(骨折遏制)的基础研究:高血压在促进骨质疏松症中的作用
- 批准号:
10483572 - 财政年份:2022
- 资助金额:
$ 17.34万 - 项目类别:
Validation of pre-clinical models of musculoskeletal healing following trauma
创伤后肌肉骨骼愈合的临床前模型的验证
- 批准号:
10618789 - 财政年份:2021
- 资助金额:
$ 17.34万 - 项目类别:
Validation of pre-clinical models of musculoskeletal healing following trauma
创伤后肌肉骨骼愈合的临床前模型的验证
- 批准号:
10392328 - 财政年份:2021
- 资助金额:
$ 17.34万 - 项目类别:
Diabetes-Related Changes Affecting Bone Quality
影响骨质量的糖尿病相关变化
- 批准号:
10683072 - 财政年份:2019
- 资助金额:
$ 17.34万 - 项目类别:
Diabetes-Related Changes Affecting Bone Quality
影响骨质量的糖尿病相关变化
- 批准号:
9563584 - 财政年份:2019
- 资助金额:
$ 17.34万 - 项目类别:
Diabetes-Related Changes Affecting Bone Quality
影响骨质量的糖尿病相关变化
- 批准号:
10436801 - 财政年份:2019
- 资助金额:
$ 17.34万 - 项目类别:
Diabetes-Related Changes Affecting Bone Quality
影响骨质量的糖尿病相关变化
- 批准号:
10155432 - 财政年份:2019
- 资助金额:
$ 17.34万 - 项目类别:
Effects of Sodium-dependent Glucose Co-transporter 2 Inhibition on Bone.
钠依赖性葡萄糖协同转运蛋白 2 抑制对骨的影响。
- 批准号:
9193426 - 财政年份:2016
- 资助金额:
$ 17.34万 - 项目类别:
The Role of Tissue Matrix in the Fracture Resistance of Diabetic Bone
组织基质在糖尿病骨抗骨折中的作用
- 批准号:
9317431 - 财政年份:2016
- 资助金额:
$ 17.34万 - 项目类别:
Effects of Sodium-dependent Glucose Co-transporter 2 Inhibition on Bone.
钠依赖性葡萄糖协同转运蛋白 2 抑制对骨的影响。
- 批准号:
9304883 - 财政年份:2016
- 资助金额:
$ 17.34万 - 项目类别:
相似海外基金
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3776700 - 财政年份:
- 资助金额:
$ 17.34万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3840306 - 财政年份:
- 资助金额:
$ 17.34万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3855332 - 财政年份:
- 资助金额:
$ 17.34万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
5202002 - 财政年份:
- 资助金额:
$ 17.34万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
3754540 - 财政年份:
- 资助金额:
$ 17.34万 - 项目类别:














{{item.name}}会员




