A 2D segmentation method for jointly characterizing epigenetic dynamics in multiple cell lines

联合表征多个细胞系表观遗传动态的二维分割方法

基本信息

  • 批准号:
    9751894
  • 负责人:
  • 金额:
    $ 34.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary: An essential problem in molecular biology is to understand how proteins and DNA interact to regulate gene expression and influence phenotypes. With advanced sequencing technologies, massive amount of genetic, epigenetic, and genomic data sets have been quickly generated. Exploiting the hundreds of genome-wide data sets across many samples provides us with an unprecedented opportunity to study the interplays among regulatory marks and their impacts on gene expression. By comparing genome-wide features across samples, key regulators functioning in specific cell types can be identified with substantial power and resolution. New hypotheses for the mechanisms of gene regulation during cell differentiation can be derived and tested, which will then illuminate previously intractable issues in the genetics of disease susceptibility. While numerous computational endeavors have been conducted to study epigenetic dynamics and pinpoint their locations, there has been a lack of unified and powerful framework to analyze multiple genomes jointly in a way that accounts for both position and cell type specificity of epigenetic events. We recently introduced a new Bayesian method called IDEAS (integrative and discriminative epigenome annotation system) that satisfactorily addressed this need, and using independent experimental data we have demonstrated its superior performance over existing state-of-the-art algorithms. In this project, we aim to substantially expand the scope and applicability of the IDEAS method, and to develop a powerful software tool for public use. In particular, we propose to 1) segment genomes with missing tracks without data imputation and integrate results between studies; 2) model covariate effects and detect epigenomic association; 3) infer fine-grained local cell type relationships; and 4) integrate chromatin conformation data to improve segmentation. In collaboration with Dr. Hardison (co-I), we will further evaluate the accuracy of a subset of our predictions experimentally. The success of this project will benefit method development, generate new resources, and importantly, advance our capability in large-scale data integration towards understanding the roles of (epi)genetics in gene regulation and complex disease.
项目概要: 分子生物学中的一个基本问题是了解蛋白质和DNA如何相互作用以调节基因 表达和影响表型。随着先进的测序技术,大量的基因, 表观遗传学和基因组数据集已经迅速生成。利用数百个全基因组数据 许多样本的集合为我们提供了一个前所未有的机会来研究 调控标记及其对基因表达的影响。通过比较样本的全基因组特征, 在特定细胞类型中起作用的关键调节子可以用相当大的能力和分辨率来鉴定。新 可以推导并检验细胞分化过程中基因调控机制的假说, 然后将阐明疾病易感性遗传学中以前棘手的问题。 虽然已经进行了许多计算努力来研究表观遗传动力学和精确定位 它们的位置,一直缺乏统一和强大的框架来分析多个基因组联合在一个 这种方式解释了表观遗传事件的位置和细胞类型特异性。我们最近推出了一个新的 贝叶斯方法称为IDEAS(综合和判别表观基因组注释系统), 解决了这一需要,并使用独立的实验数据,我们已经证明了其上级性能 现有的最先进的算法。 在这个项目中,我们的目标是大大扩展IDEAS方法的范围和适用性,并 开发一个强大的软件工具供公众使用。特别是,我们建议1)片段基因组缺失 跟踪无数据插补并整合研究之间的结果; 2)建立协变量效应模型并检测 表观基因组关联; 3)推断细粒度的局部细胞类型关系;以及4)整合染色质 构象数据,以改善分割。 在与哈迪森博士(co-I)的合作中,我们将进一步评估我们预测的一个子集的准确性 实验性的该项目的成功将有利于方法开发,产生新的资源, 重要的是,提高我们在大规模数据集成方面的能力, (epi)基因调控和复杂疾病的遗传学。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaun Aengus Mahony其他文献

Shaun Aengus Mahony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaun Aengus Mahony', 18)}}的其他基金

Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10798541
  • 财政年份:
    2022
  • 资助金额:
    $ 34.24万
  • 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10544796
  • 财政年份:
    2022
  • 资助金额:
    $ 34.24万
  • 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10330514
  • 财政年份:
    2022
  • 资助金额:
    $ 34.24万
  • 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
  • 批准号:
    10166093
  • 财政年份:
    2018
  • 资助金额:
    $ 34.24万
  • 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
  • 批准号:
    10078275
  • 财政年份:
    2018
  • 资助金额:
    $ 34.24万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了