A 2D segmentation method for jointly characterizing epigenetic dynamics in multiple cell lines
联合表征多个细胞系表观遗传动态的二维分割方法
基本信息
- 批准号:9751894
- 负责人:
- 金额:$ 34.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBayesian MethodBiologicalBiological AssayBiological ModelsBiomedical ResearchCell Differentiation processCell LineCellsCellular AssayCharacteristicsChromatinCollaborationsCommunitiesComplexComputing MethodologiesDNADNA SequenceDataData SetData Storage and RetrievalDiseaseDisease susceptibilityDistantEnhancersEpigenetic ProcessErythroidEventExhibitsGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenetic DiseasesGenomeGoalsGrainHematopoieticHigh-Throughput Nucleotide SequencingHuman GenomeJointsLocationMeasuresMechanicsMethodsModelingMolecularMolecular BiologyMolecular ConformationOutcomePerformancePhenotypePositioning AttributeProteinsRegulationRegulatory ElementResolutionResourcesRoleSamplingSignal TransductionSoftware ToolsSourceSpecificityStatistical ModelsSystemTechniquesTechnologyTestingTimeTissuesVariantWorkannotation systembasecell typecomparativecomputerized toolscostdata integrationepigenomeepigenomicsgenome editinggenome-widegenomic datahigh throughput analysishuman diseaseimprovedinsightmethod developmentmouse genomenovelsuccesstooltrait
项目摘要
Project Summary:
An essential problem in molecular biology is to understand how proteins and DNA interact to regulate gene
expression and influence phenotypes. With advanced sequencing technologies, massive amount of genetic,
epigenetic, and genomic data sets have been quickly generated. Exploiting the hundreds of genome-wide data
sets across many samples provides us with an unprecedented opportunity to study the interplays among
regulatory marks and their impacts on gene expression. By comparing genome-wide features across samples,
key regulators functioning in specific cell types can be identified with substantial power and resolution. New
hypotheses for the mechanisms of gene regulation during cell differentiation can be derived and tested, which
will then illuminate previously intractable issues in the genetics of disease susceptibility.
While numerous computational endeavors have been conducted to study epigenetic dynamics and pinpoint
their locations, there has been a lack of unified and powerful framework to analyze multiple genomes jointly in a
way that accounts for both position and cell type specificity of epigenetic events. We recently introduced a new
Bayesian method called IDEAS (integrative and discriminative epigenome annotation system) that satisfactorily
addressed this need, and using independent experimental data we have demonstrated its superior performance
over existing state-of-the-art algorithms.
In this project, we aim to substantially expand the scope and applicability of the IDEAS method, and to
develop a powerful software tool for public use. In particular, we propose to 1) segment genomes with missing
tracks without data imputation and integrate results between studies; 2) model covariate effects and detect
epigenomic association; 3) infer fine-grained local cell type relationships; and 4) integrate chromatin
conformation data to improve segmentation.
In collaboration with Dr. Hardison (co-I), we will further evaluate the accuracy of a subset of our predictions
experimentally. The success of this project will benefit method development, generate new resources, and
importantly, advance our capability in large-scale data integration towards understanding the roles of
(epi)genetics in gene regulation and complex disease.
项目总结:
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaun Aengus Mahony其他文献
Shaun Aengus Mahony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaun Aengus Mahony', 18)}}的其他基金
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10798541 - 财政年份:2022
- 资助金额:
$ 34.24万 - 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10544796 - 财政年份:2022
- 资助金额:
$ 34.24万 - 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10330514 - 财政年份:2022
- 资助金额:
$ 34.24万 - 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
- 批准号:
10166093 - 财政年份:2018
- 资助金额:
$ 34.24万 - 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
- 批准号:
10078275 - 财政年份:2018
- 资助金额:
$ 34.24万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Research Grant














{{item.name}}会员




