Mechanisms of translational control
翻译控制机制
基本信息
- 批准号:9754187
- 负责人:
- 金额:$ 37.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBiochemicalBiologyCellsChemicalsDataDevelopmentDiseaseGene ExpressionGene Expression RegulationHealthHumanIndividualInitiator CodonKineticsLaboratory ResearchLinkMalignant NeoplasmsMeasurementMessenger RNAModificationMolecularMovementPeptidesPhasePost-Translational Protein ProcessingProcessProductionProteinsRegulationResearchRibosomesSpeedStructureTechniquesTranslatingTranslation AlterationTranslationsWorkfrontiergenome-widetargeted treatmenttool
项目摘要
Project summary
Despite being one of the most central processes in biology many key questions remain about how protein
translation by the ribosome is regulated. Translational control is fundamentally important for human health as
dysregulation of translation is known to be involved in myriad of diseases, including numerous cancers. Our
understanding of the translational control of gene expression is currently undergoing a paradigm switch. Until
recently it was thought that all translational control takes place when the ribosomes decide to, or not to, initiate
on a start codon. However, a wealth of recent data suggests that translation is also widely regulated after initiation
has occurred, during the subsequent `elongation' phase of translation. Thus, the regulation of translation
elongation is an expanding frontier for exploring the translational control of gene expression.
My lab uses a powerful compliment of kinetic and genome-wide tools to investigate how the speed of
ribosome elongation can be modulated to regulate gene expression. We also directly collaborate with experts to
investigate both ribosome and mRNA structures. This proposal focuses on using these approaches investigate
situations at the molecular level where the slow progression of the ribosome has been linked to cell health and
viability, but where molecular mechanisms are unknown. Specifically, our work seeks to discover: 1) how nascent
peptides modulate the rate of translation, 2) how non-canonical movements of the ribosome change gene
expression, 3) how mRNA modifications impact translation rates, and 4) how post-translational modifications
impact the translation machinery. These studies will provide a biochemical framework for understanding how
controlling ribosome elongation rates contributes globally to gene expression.
In summary, we fill crucial gaps in the burgeoning field of translation regulation via ribosome stalling
mechanisms. Our studies will reveal the breadth of gene regulation via translational stalling, and dissect the
molecular mechanism(s) of translational control. Overall, this work will challenge the long-held paradigm that the
ribosome indiscriminately translates the majority of sequences at a mostly uniform rate. In the long-term, our
findings could be key for the development of targeted therapeutics to treat diseases linked to alterations of
translation elongation.
项目总结
尽管蛋白质是生物学中最核心的过程之一,但许多关键问题仍然存在
核糖体的翻译是受调控的。翻译控制对人类健康至关重要,因为
众所周知,翻译的失调与无数的疾病有关,包括许多癌症。我们的
对基因表达的翻译控制的理解目前正在经历一种范式转换。直到
最近,人们认为所有的翻译控制都发生在核糖体决定启动或不启动的时候。
在起始密码子上。然而,最近的大量数据表明,翻译在启动后也受到广泛的监管
在随后的翻译“延长”阶段,发生了什么。因此,对翻译的规范
延伸是探索基因表达的翻译控制的一个不断扩大的前沿。
我的实验室使用了一系列强有力的动力和全基因组工具来研究
核糖体的伸长可以被调节来调节基因的表达。我们还直接与专家合作,
研究核糖体和信使核糖核酸结构。本提案侧重于使用这些方法进行调查
在分子水平上,核糖体进展缓慢与细胞健康和
生存能力,但分子机制尚不清楚。具体地说,我们的工作试图发现:1)新生的
多肽调节翻译的速度,2)核糖体的非规范运动如何改变基因
表达,3)信使核糖核酸修饰如何影响翻译效率,4)翻译后修饰
冲击翻译机器。这些研究将提供一个生化框架,以了解
控制核糖体伸长率有助于基因的全球表达。
总之,我们通过核糖体停滞来填补翻译调控这一新兴领域的关键空白。
机制。我们的研究将揭示通过翻译停滞进行的基因调控的广度,并剖析
翻译调控的分子机制(S)。总体而言,这项工作将挑战长期以来的范式,即
核糖体以基本一致的速率不分青红皂白地翻译大多数序列。从长远来看,我们的
这些发现可能是开发靶向疗法来治疗与脑血管病变相关的疾病的关键
平移伸长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin S Koutmou其他文献
Kristin S Koutmou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin S Koutmou', 18)}}的其他基金
Michigan Chemistry-Biology Interface Training Program
密歇根化学-生物界面培训计划
- 批准号:
10440252 - 财政年份:2019
- 资助金额:
$ 37.4万 - 项目类别:
Michigan Chemistry-Biology Interface Training Program
密歇根化学-生物界面培训计划
- 批准号:
10654575 - 财政年份:2019
- 资助金额:
$ 37.4万 - 项目类别:
Mechanism and targets of non-stop decay in eukaryotic translation
真核翻译不间断衰变的机制和靶点
- 批准号:
8451645 - 财政年份:2012
- 资助金额:
$ 37.4万 - 项目类别:
Mechanism and targets of non-stop decay in eukaryotic translation
真核翻译不间断衰变的机制和靶点
- 批准号:
8638787 - 财政年份:2012
- 资助金额:
$ 37.4万 - 项目类别:
Mechanism and targets of non-stop decay in eukaryotic translation
真核翻译不间断衰变的机制和靶点
- 批准号:
8254541 - 财政年份:2012
- 资助金额:
$ 37.4万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Developing synthetic chemical biology strategies for biochemical investigations and biomedical applications
开发用于生化研究和生物医学应用的合成化学生物学策略
- 批准号:
10623497 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Defining the biochemical mechanisms of microtubule shrinking and nucleation by combining innovative experiments and simulations
2022 财年 NSF 生物学博士后奖学金:通过结合创新实验和模拟来定义微管收缩和成核的生化机制
- 批准号:
2209298 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Fellowship Award
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10665058 - 财政年份:2021
- 资助金额:
$ 37.4万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1 - Multi-Mode Detection and Imaging of Biomolecular Condensates.
描述 EWSR1 生物学的综合生化和结构方法 - 生物分子凝聚物的多模式检测和成像。
- 批准号:
10797858 - 财政年份:2021
- 资助金额:
$ 37.4万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10298663 - 财政年份:2021
- 资助金额:
$ 37.4万 - 项目类别:
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2019
- 资助金额:
$ 37.4万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2018
- 资助金额:
$ 37.4万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2017
- 资助金额:
$ 37.4万 - 项目类别:
Discovery Grants Program - Individual