Consequences and Control of Randomness in Timing of Intracellular
细胞内时间随机性的后果和控制
基本信息
- 批准号:9754192
- 负责人:
- 金额:$ 22.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsAutomobile DrivingBacteriophage lambdaBacteriophagesBiochemical ReactionBiological ModelsBiological ProcessBiological SciencesBuffersCardiac MyocytesCell Cycle RegulationCell SizeCell membraneCell physiologyCellsCodeCytolysisDataDevelopmentDiseaseEnsureEnvironmentEscherichia coliEventExcisionExposure toFeedbackGene ExpressionGene Expression RegulationGenetic TranscriptionGenomeGrowthH1299HIVHumanIndividualKnowledgeLifeLyticMalignant Epithelial CellMathematicsMeasurementMeasuresMediatingMedicalMessenger RNAModelingMolecularMusMutationNatureNoiseNon-linear ModelsNucleic Acid Regulatory SequencesOrganismPathway interactionsPhenotypeProkaryotic CellsProteinsRegulationResearchRoleScheduleSourceStochastic ProcessesStructural ProteinStudy modelsSystemTestingTimeTranslationsVariantViralVirusage relatedcancer cellchemotherapyexperimental studygene productgenetic regulatory proteininformation processinginsightlife historylung Carcinomamathematical modelmutantnovelparticlepathogenic bacteriapredictive modelingprotein structuretat Genestemporal measurement
项目摘要
Project Summary/Abstract:
At the level of individual cells, expression of genes is inherently stochastic across organisms
ranging from prokaryotes to human cells. Stochastic expression manifests as cell-to-cell
variation in gene product levels even among isogenic cells, and this variation significantly
affects biological functions and phenotype. How cells ensure precision in the timing of key
intracellular events in the face of of stochastic expression is an intriguing fundamental problem.
One simple model for studying event timing is the phage λ's lysis system, where lysis of the
infected E. coli cell occurs when a protein, holin, reaches a critical threshold concentration in the
cell membrane. Intriguingly, preliminary data reveals precision in timing: individual cells lyse at
an optimally scheduled time with minimal statistical fluctuations in timing. The key objective of
this proposal is to use λ's lysis system to uncover regulatory mechanisms essential for
buffering noise in timing at the single-cell level. Mathematically, noise in the event timing is
investigated using the first-passage time framework, where an event is triggered when a
stochastic process (holin level) hits a threshold for the first time. Novel analytical calculations of
the first-passage time will be performed for stochastic models of gene expression and regulation
of varying complexities. Combining theoretical results with single-cell lysis time measurements
in both wild-type and mutant phages, the mechanisms controlling stochasticity in the timing of
intracellular events will be characterized. In addition, we will use combination of mathematical
models and experiments to determine how stochasticity in lysis times drives intercellular
variations in the λ progeny count per cell.
The first-passage time framework developed here is quite general as timing of diverse cellular
processes depends on regulatory molecules reaching critical threshold levels. Identification of
regulatory motifs that buffer randomness in the timing of intracellular events has consequences
for cell-cycle control and development, where precision is required for proper system
functioning. Quantitative characterization of λ's lysis system is also critical for emerging medical
applications such as using holin proteins for targeting cancer cells and pathogenic bacteria.
项目概要/摘要:
在单个细胞的水平上,基因的表达在生物体中具有内在的随机性
从原核生物到人类细胞。随机表达表现为细胞对细胞
甚至在同基因细胞中基因产物水平的变化,并且这种变化显著
影响生物学功能和表型。细胞如何确保关键时间的精确性
面对随机表达的细胞内事件是一个有趣的基本问题。
研究事件发生时间的一个简单模型是噬菌体λ的裂解系统,其中噬菌体λ的裂解是由噬菌体λ的裂解引起的。
感染E.当一种蛋白质holin在大肠杆菌细胞中达到临界阈值浓度时,
细胞膜有趣的是,初步数据揭示了时间的精确性:单个细胞在
最佳安排的时间,具有最小的定时统计波动。的关键目标
这个建议是使用λ的裂解系统来揭示调控机制,
在单小区级别缓冲定时中的噪声。从数学上讲,事件定时中的噪声是
使用首次通过时间框架进行调查,其中当事件发生时触发事件,
随机过程(Holin水平)第一次达到阈值。新的分析计算
首次通过时间将用于基因表达和调控的随机模型
复杂程度各不相同将理论结果与单细胞裂解时间测量相结合
在野生型和突变体中,控制随机性的机制在时间上是随机的。
将表征细胞内事件。此外,我们将使用数学的组合
模型和实验,以确定裂解时间的随机性如何驱动细胞间
每个细胞的λ子代计数的变化。
这里开发的第一次通过时间框架是相当普遍的,因为不同细胞的时间选择是不同的。
过程取决于调节分子达到临界阈值水平。鉴定
缓冲细胞内事件发生时间的随机性的调节基序具有后果
用于细胞周期控制和开发,其中需要精确度以获得适当的系统
功能λ裂解系统的定量表征对于新兴的医学研究也至关重要。
例如使用holin蛋白质靶向癌细胞和致病细菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhyudai Singh其他文献
Abhyudai Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhyudai Singh', 18)}}的其他基金
Generalized fluctuation test for deciphering phenotypic switching within cell populations
破译细胞群内表型转换的广义波动测试
- 批准号:
10552300 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
CRCNS: Mechanistic Modeling and Inference of Neuronal Synaptic Transmission
CRCNS:神经元突触传递的机制建模和推断
- 批准号:
10426127 - 财政年份:2020
- 资助金额:
$ 22.35万 - 项目类别:
CRCNS: Mechanistic Modeling and Inference of Neuronal Synaptic Transmission
CRCNS:神经元突触传递的机制建模和推断
- 批准号:
10206091 - 财政年份:2020
- 资助金额:
$ 22.35万 - 项目类别:
Stochastic hybrid systems approach to uncovering cell-size control mechanisms
揭示细胞大小控制机制的随机混合系统方法
- 批准号:
9460644 - 财政年份:2017
- 资助金额:
$ 22.35万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 22.35万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 22.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)