Transformative Computational Infrastructures for Cell-Based Biomarker Diagnostics

基于细胞的生物标志物诊断的变革性计算基础设施

基本信息

  • 批准号:
    9754269
  • 负责人:
  • 金额:
    $ 79.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary The presence of abnormal cell populations in patient samples is diagnostic for a variety of human diseases, especially leukemias and lymphomas. One of the main technologies used for cell-based diagnostic evaluation is flow cytometry, which employs fluorescent reagents to measure molecular characteristics of cell populations in complex mixtures. While cytometry evaluation is routinely used for the diagnosis of blood-borne malignancies, it could be more widely applied to the diagnosis of other diseases (e.g. asthma, allergy and autoimmunity) if it could be reproducibly used to interpret higher complexity staining panels and recognize more subtle cell population differences. Flow cytometry analysis is also widely used for single cell phenotyping in translational research studies to explore the mechanisms of normal and abnormal biological processes. More recently, the development of mass cytometry promises to further increase the application of single cell cytometry evaluation to understand a wide range of physiological, pathological and therapeutic processes. The current practice for cytometry data analysis relies on “manual gating” of two-dimensional data plots to identify cell subsets in complex mixtures. However, this process is subjective, labor intensive, and irreproducible making it difficult to deploy in multicenter translational research studies or clinical trials where protocol standardization and harmonization are essential. The goal of this project is to develop, validate and disseminate a user-friendly infrastructure for the computational analysis of cytometry data for both diagnostic and discovery applications that could help overcome the current limitations of manual analysis and provide for more efficient, objective and accurate analysis, through the following aims: Specific Aim 1 – Implement a novel computational infrastructure – FlowGate – for cytometry data analysis that includes visual analytics and machine learning; Specific Aim 2 – Assess the utility of FlowGate for cell population characterization in mechanistic translational research studies (T1); Specific Aim 3 – Assess the robustness and accuracy of FlowGate for clinical diagnostics in comparison with the current standard-of-care analysis of diagnostic cytometry data (T2); Specific Aim 4 – Develop training and educational resources and conduct directed outreach activities to stimulate adoption and use of the resulting FlowGate cyberinfrastructure. The project will have a major impact in advancing translational science by overcoming key hurdles for adoption of these computational methods by facilitating analysis pipeline optimization, providing intuitive user interfacing, and delivering directed training activities. The application of the developed computational infrastructure for improved diagnostics of AML and CLL will contribute to the new emphasis on precision medicine by more precisely quantifying the patient-specific characteristics of neoplastic and normal reactive cell populations. Although FlowGate will be developed by the UC San Diego, UC Irvine, and Stanford CTSAs, the resulting computational infrastructure will be made freely available to the entire research community.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Qian其他文献

Higher-Order Derivative of Self-Intersection Local Time for Fractional Brownian Motion
分数布朗运动自交局部时间的高阶导数

Yu Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Qian', 18)}}的其他基金

Transformative Computational Infrastructures for Cell-Based Biomarker Diagnostics
基于细胞的生物标志物诊断的变革性计算基础设施
  • 批准号:
    9975252
  • 财政年份:
    2016
  • 资助金额:
    $ 79.46万
  • 项目类别:
Transformative Computational Infrastructures for Cell-Based Biomarker Diagnostics
基于细胞的生物标志物诊断的变革性计算基础设施
  • 批准号:
    9352387
  • 财政年份:
    2016
  • 资助金额:
    $ 79.46万
  • 项目类别:

相似海外基金

Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
  • 批准号:
    10655162
  • 财政年份:
    2023
  • 资助金额:
    $ 79.46万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10651543
  • 财政年份:
    2023
  • 资助金额:
    $ 79.46万
  • 项目类别:
Experimental and preclinical modeling of NUP98-rearranged acute leukemia
NUP98重排急性白血病的实验和临床前模型
  • 批准号:
    10829603
  • 财政年份:
    2023
  • 资助金额:
    $ 79.46万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10839678
  • 财政年份:
    2023
  • 资助金额:
    $ 79.46万
  • 项目类别:
A Systems Epidemiology Approach for Predicting Methotrexate Neurotoxicity in Pediatric Acute Leukemia
预测儿童急性白血病甲氨蝶呤神经毒性的系统流行病学方法
  • 批准号:
    10655716
  • 财政年份:
    2023
  • 资助金额:
    $ 79.46万
  • 项目类别:
Anti-CD25 Radioimmunotherapy and Total Marrow Irradiation for Treatment of Relapsed and Refractory Acute Leukemia
抗CD25放射免疫治疗和全骨髓照射治疗复发难治性急性白血病
  • 批准号:
    10435886
  • 财政年份:
    2022
  • 资助金额:
    $ 79.46万
  • 项目类别:
mRNA stability and its impact on hematopoiesis and acute leukemia
mRNA稳定性及其对造血和急性白血病的影响
  • 批准号:
    10339742
  • 财政年份:
    2022
  • 资助金额:
    $ 79.46万
  • 项目类别:
Diversifying Acute Leukemia Clinical Trial Enrollment Through Multilevel Intervention
通过多层次干预使急性白血病临床试验招募多样化
  • 批准号:
    10505579
  • 财政年份:
    2022
  • 资助金额:
    $ 79.46万
  • 项目类别:
Clonal dynamics and chemoresistance mechanisms of minimal residual disease in acute leukemia
急性白血病微小残留病的克隆动力学和化疗耐药机制
  • 批准号:
    10351765
  • 财政年份:
    2022
  • 资助金额:
    $ 79.46万
  • 项目类别:
Anti-CD25 Radioimmunotherapy and Total Marrow Irradiation for Treatment of Relapsed and Refractory Acute Leukemia
抗CD25放射免疫治疗和全骨髓照射治疗复发难治性急性白血病
  • 批准号:
    10576955
  • 财政年份:
    2022
  • 资助金额:
    $ 79.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了