Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
基本信息
- 批准号:9886122
- 负责人:
- 金额:$ 30.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-07 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ArabidopsisBacterial RNABiochemicalBiochemistryBioenergeticsBiogenesisBiological AssayBiologyCell NucleusCellular biologyChloroplastsCommunicationComplexDNA-Directed RNA PolymeraseDataElectron MicroscopyFamilyGene ExpressionGenesGenetic ModelsGenetic ScreeningGenetic TranscriptionGenomeGenomic approachGenomicsGoalsHumanHuman PathologyKnowledgeLaboratoriesLeadLearningLightMalignant NeoplasmsMediatingMissionMitochondriaModelingMolecular GeneticsNuclearOrganellesOrganismOxidative PhosphorylationPhotoreceptorsPhotosynthesisPhytochromePlantsPlastidsProteinsPublic HealthRegulationResearchRoleSignal PathwaySignal TransductionStructureTestingTranscriptional RegulationUnited States National Institutes of HealthWorkbasecryogenicsdisabilitygenetic approachhuman diseaseinnovationnovelphyA phytochromeprogramsprotein complexreverse geneticsstructural biologytranscription factor
项目摘要
Abstract
The control of organellar gene expression is critical for cellular programming of all eukaryotic organisms.
While perturbing mitochondrial gene expression leads to human pathologies, including cancer, altering
plastidial gene expression can kill plants. However, the cell signaling mechanisms that control organellar
gene expression remain poorly understood. The long-term goal of the PI’s laboratory is to utilize
photoreceptor-regulated chloroplast biogenesis in Arabidopsis as a genetic model to understand cell
signaling mechanisms controlling organellar gene expression. The current data support the central
hypothesis that the red and far-red photoreceptors, the phytochromes, induce the expression of plastid-
encoded photosynthesis-associated genes through nucleus-to-plastid signaling that activates a bacterial-
type plastidial RNA polymerase. Here the PI propose to utilize a combination of molecular genetics,
biochemistry, structure biology, cell biology, and genomics approaches to (1) determine the activation
mechanism of the bacterial-type RNA polymerase in plastids, (2) identify the nucleus-to-plastid signal that
triggers the activation of the plastidial RNA polymerase, and (3) determine the phytochrome signaling
mechanism that initiates the nucleus-to-plastid signaling in the nucleus. The proposed research is
innovative because it utilizes photoreceptor signaling and chloroplast biogenesis in Arabidopsis as a
genetic model to investigate a previously uncharacterized nucleus-to-organelle signaling pathway. The PI
has developed new forward genetic screens and biochemical assays to identify components in the
nucleus-to-plastid signaling and elucidate their signaling mechanisms. The proposed research is significant,
because it is expected to uncover the photoreceptor signaling mechanisms controlling plastidial transcription -
a long-standing gap in our knowledge of plant light signaling and chloroplast biogenesis. Because the
control of transcription in plastids shares many similarities with that in mitochondria, what we learn in the
plastid model is expected to enhance the understanding of the general principles of cell signaling mechanisms
in controlling organellar gene expression, including the regulation of mitochondrial gene expression, and
therefore, will ultimately contribute to the understanding of the mechanisms underlying the misregulations of
mitochondrial gene expression in human diseases.
!
摘要
细胞器基因表达的控制对于所有真核生物的细胞编程是至关重要的。
虽然扰乱线粒体基因表达会导致人类病理学,包括癌症,但改变
质体基因的表达可以杀死植物。然而,控制细胞器的细胞信号机制
基因表达仍然知之甚少。PI实验室的长期目标是利用
光受体调控拟南芥叶绿体生物发生作为理解细胞遗传模型
控制细胞器基因表达的信号机制。目前的数据支持中央
假设红色和远红色光感受器,光敏色素,诱导质体的表达-
编码光合作用相关基因,通过细胞核到质体的信号传导,激活细菌,
型质体RNA聚合酶。在这里,PI建议利用分子遗传学的组合,
生物化学、结构生物学、细胞生物学和基因组学方法,以(1)确定激活
质体中细菌型RNA聚合酶的作用机制,(2)鉴定核质信号,
触发质体RNA聚合酶的激活,以及(3)确定光敏色素信号传导
启动细胞核中的细胞核到质体信号传导的机制。拟议的研究是
创新,因为它利用拟南芥中的光感受器信号传导和叶绿体生物发生作为一种
遗传模型来研究以前未表征的细胞核到细胞器信号通路。的PI
已经开发了新的正向遗传筛选和生物化学测定,以识别
核质信号转导,并阐明其信号转导机制。拟议的研究意义重大,
因为它有望揭示控制质体转录的光感受器信号机制-
这是我们对植物光信号和叶绿体生物发生认识的一个长期空白。因为
质体中的转录控制与线粒体中的转录控制有许多相似之处,
质体模型有望增强对细胞信号传导机制一般原理的理解
控制细胞器基因表达,包括线粒体基因表达的调节,
因此,最终将有助于理解错误监管的机制,
线粒体基因在人类疾病中的表达。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meng Chen其他文献
Meng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meng Chen', 18)}}的其他基金
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
- 批准号:
10321648 - 财政年份:2020
- 资助金额:
$ 30.1万 - 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
- 批准号:
10534736 - 财政年份:2020
- 资助金额:
$ 30.1万 - 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
- 批准号:
10580265 - 财政年份:2020
- 资助金额:
$ 30.1万 - 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
- 批准号:
10375791 - 财政年份:2020
- 资助金额:
$ 30.1万 - 项目类别:
Improved long-term biocompatibility of coronary stents by plasma coating process
通过等离子涂层工艺改善冠状动脉支架的长期生物相容性
- 批准号:
8534805 - 财政年份:2012
- 资助金额:
$ 30.1万 - 项目类别:
Improved long-term biocompatibility of coronary stents by plasma coating process
通过等离子涂层工艺改善冠状动脉支架的长期生物相容性
- 批准号:
8324840 - 财政年份:2012
- 资助金额:
$ 30.1万 - 项目类别:
Improved long-term biocompatibility of coronary stents by plasma coating process
通过等离子涂层工艺改善冠状动脉支架的长期生物相容性
- 批准号:
9301988 - 财政年份:2011
- 资助金额:
$ 30.1万 - 项目类别:
Improved long-term biocompatibility of coronary stents by plasma coating process
通过等离子涂层工艺改善冠状动脉支架的长期生物相容性
- 批准号:
8061940 - 财政年份:2011
- 资助金额:
$ 30.1万 - 项目类别:
Genetic characterization of phytochrome nuclear bodies in plant light signaling
植物光信号传导中光敏色素核体的遗传特征
- 批准号:
8324310 - 财政年份:2010
- 资助金额:
$ 30.1万 - 项目类别:
Genetic characterization of phytochrome nuclear bodies in plant light signaling
植物光信号传导中光敏色素核体的遗传特征
- 批准号:
8498651 - 财政年份:2010
- 资助金额:
$ 30.1万 - 项目类别:
相似海外基金
Deciphering newly uncovered mechanisms of fluid regulation in bacterial RNA-protein networks
破译细菌 RNA-蛋白质网络中新发现的液体调节机制
- 批准号:
2349832 - 财政年份:2024
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2021
- 资助金额:
$ 30.1万 - 项目类别:
Discovery Grants Program - Individual
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2020
- 资助金额:
$ 30.1万 - 项目类别:
Discovery Grants Program - Individual
Development of a Novel Class of Gram-Negative Antibiotics that Target Bacterial RNA
开发一类针对细菌 RNA 的新型革兰氏阴性抗生素
- 批准号:
10016075 - 财政年份:2019
- 资助金额:
$ 30.1万 - 项目类别:
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2019
- 资助金额:
$ 30.1万 - 项目类别:
Discovery Grants Program - Individual
Mechanistic studies of a new family of bacterial RNA chaperones
细菌RNA伴侣新家族的机制研究
- 批准号:
RGPIN-2016-05163 - 财政年份:2018
- 资助金额:
$ 30.1万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of molecular pathogenesis in bacterial RNA-induced cytokine storm
阐明细菌 RNA 诱导的细胞因子风暴的分子发病机制
- 批准号:
17K10012 - 财政年份:2017
- 资助金额:
$ 30.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)