Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
基本信息
- 批准号:9887709
- 负责人:
- 金额:$ 37.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffinityAllosteric SiteAntineoplastic AgentsArchitectureAreaBenchmarkingBindingBiological AssayCCNE1 geneCancer PatientChemicalsChemistryClinicalComplexCrowdingCustomCyclin-Dependent Kinase InhibitorCysteineDevelopmentDiseaseDissociationDrug ScreeningDrug TargetingDyesEmploymentExcisionFGFR1 geneFailureFluorescenceFluorescence Resonance Energy TransferFluorescent ProbesFundingGrowthHigh PrevalenceHumanIncidenceKineticsLabelLegal patentMalignant NeoplasmsMalignant neoplasm of prostateMediatingMitoticMonitorMovementNeuroblastomaNeurosecretory SystemsPhosphotransferasesPlayProceduresProtein KinaseProto-Oncogene Proteins B-rafPublishingReaderReadinessResistanceResolutionSeriesSignal TransductionSiteStructureSulfhydryl CompoundsSystemTechnologyTherapeuticTimeToxic effectTreatment FailureWorkaurora kinase Abasecancer therapycombatdesigndrug developmentdrug discoveryhigh throughput screeninginhibitor/antagonistkinase inhibitornanosecondnew technologynext generationnovelnovel anticancer drugnovel strategiesoverexpressionprotein complexscaffoldscreeningscreening programsensorsensor technologysmall moleculesrc-Family Kinasessuccesstoolunnatural amino acids
项目摘要
ABSTRACT
The protein kinases are the top class of drug targets for the development of new cancer therapeutics. Existing
kinase inhibitors, which target the highly-conserved active sites of kinases, have major limitations including poor
selectivity and a high incidence of clinical resistance leading to treatment failure. New allosteric inhibitors, which
bind in other pockets outside the kinase active site and trigger structural changes that block kinase activity, are
far more selective and are highly effective at overriding clinical resistance to conventional kinase inhibitors.
However, allosteric kinase inhibitors have proven extremely challenging to identify with existing drug screening
technologies, and are only available for a small handful of kinases.
A major reason for this failure of existing drug screening technologies is that they cannot detect the atomic-
scale structural changes that define the mode of action of allosteric kinase inhibitors. We have developed a
game-changing high-throughput screening technology, based on nanosecond time-resolved fluorescence, that
can identify allosteric inhibitors by tracking with atomic resolution the structural changes they trigger in the kinase
drug target. Applying this technology to the mitotic protein kinase Aurora A, we have shown that it can
simultaneously track inhibitor binding affinity and allosteric effects on the kinase, can classify inhibitors into
different allosteric subtypes, and is sufficiently accurate, rapid and scalable to handle high-throughput screening
projects. To maximize the impact of the technology on the drug discovery pipeline, several technical barriers
need to be surmounted to expand the scope of the technology beyond the current single drug target Aurora A.
Our current technology is based on a chemical labeling procedure for incorporating fluorescent probes,
cysteine labeling, that is not readily applicable to many important kinase drug targets due to the presence of
cysteine residues important for structural integrity and catalytic function. In this proposal, we broaden the scope
of the technology to make it applicable to the majority of the ~500 human kinases by developing a series of new
tools for site-specific probe incorporation and by expanding the range and type of small molecules that can be
identified in screening. Finally, we benchmark the suitability of the technology for real-world drug discovery efforts
by performing a high-throughput screening project to identify novel allosteric inhibitors of at least one protein
kinase for which no allosteric inhibitors are currently available.
The success of this project will bring an entirely-new allosteric drug discovery technology into being, with
unique capabilities that no existing technology can provide. Employment of this approach could jumpstart the
discovery of allosteric kinase inhibitors for a large number of important cancer drug targets, broadening the range
of therapeutic options for cancer patients and providing a much-needed new approach for combating the high
prevalence of clinical resistance to first-line kinase inhibitor therapies.
摘要
蛋白激酶是开发新的癌症治疗药物的顶级靶点。现有
针对高度保守的活性部位的激酶抑制剂有很大的局限性,包括较差。
选择性和高发生率的临床耐药导致治疗失败。新的变构抑制剂,它
结合在激酶活性部位外的其他口袋中,并触发阻止激酶活性的结构变化,是
选择性高得多,在克服临床对传统激酶抑制剂的耐药性方面非常有效。
然而,变构激酶抑制剂已被证明极具挑战性,难以与现有的药物筛选相一致。
技术,并且只有一小部分Kinase可用。
现有药物筛选技术失败的一个主要原因是它们无法检测到原子-
定义变构激酶抑制剂作用模式的鳞片结构变化。我们已经开发出一种
基于纳秒时间分辨荧光的改变游戏规则的高通量筛选技术,
可以通过原子分辨率跟踪它们在激酶中触发的结构变化来识别变构抑制剂
毒品目标。将这项技术应用于有丝分裂蛋白激酶Aurora A,我们已经证明了它可以
同时跟踪抑制剂结合亲和力和变构对激酶的影响,可以将抑制剂分为
不同的变构亚型,并且足够准确、快速和可扩展以处理高通量筛选
项目。为了最大限度地发挥这项技术对药物发现管道的影响,有几个技术障碍
需要被克服,以扩大该技术的范围,超越目前单一的药物靶标Aurora A。
我们目前的技术是基于结合荧光探针的化学标记程序,
半胱氨酸标记,这不是很容易适用于许多重要的激酶药物靶点,因为存在
半胱氨酸残基对结构完整性和催化功能很重要。在这项建议中,我们扩大了范围
通过开发一系列新的技术使其适用于~500种人类激酶中的大多数
用于位点特定探针掺入的工具,并通过扩大小分子的范围和类型
在筛查中被识别出来。最后,我们对该技术在现实世界药物发现工作中的适用性进行了基准测试
通过执行高通量筛选项目来确定至少一种蛋白质的新型变构抑制剂
目前尚无变构抑制剂的激酶。
该项目的成功将带来一种全新的变构药物发现技术,
现有技术无法提供的独特功能。采用这种方法可能会启动
发现了针对大量重要抗癌药物靶点的变构激酶抑制剂,拓宽了治疗范围
为癌症患者提供了一种治疗选择,并提供了一种亟需的新方法来对抗
临床对一线激酶抑制剂治疗的抵抗率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Mark Levinson其他文献
Nicholas Mark Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Mark Levinson', 18)}}的其他基金
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10373096 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10595089 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10097782 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10210065 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10593935 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10360449 - 财政年份:2021
- 资助金额:
$ 37.55万 - 项目类别:
Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
- 批准号:
10348717 - 财政年份:2020
- 资助金额:
$ 37.55万 - 项目类别:
Decoding the dynamic mechanism of allosteric activation in the cyclin-dependent kinase Cdk2
解读细胞周期蛋白依赖性激酶 Cdk2 变构激活的动态机制
- 批准号:
10321568 - 财政年份:2018
- 资助金额:
$ 37.55万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8351780 - 财政年份:2012
- 资助金额:
$ 37.55万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8973668 - 财政年份:2012
- 资助金额:
$ 37.55万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Continuing Grant