Developing next generation synthetic nucleic acid analogous for sickle cell disease gene editing

开发类似于镰状细胞病基因编辑的下一代合成核酸

基本信息

  • 批准号:
    9887211
  • 负责人:
  • 金额:
    $ 39.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary There is substantial interest in gene editing as a means to treat human genetic disorders such as sickle cell disease (SCD). Much effort has been focused on targeted nucleases such as CRISPR/Cas9, since site-directed DNA damage strongly promotes homologous recombination (HR). However, clinical application of targeted nucleases is challenged by the risk of off-target cleavage in the genome, which can lead to carcinogenesis. As an alternative, we have shown that chemically modified triplex-forming peptide nucleic acids (TFPs) and donor DNAs (containing corrected base) delivered intravenously (IV) via poly(lactic-co-glycolic) acid (PLGA) nanoparticles into a mouse model of human β-thalassemia produced almost complete amelioration of the disease, with clinically relevant β-globin gene correction frequencies in hematopoietic stem cells (HSCs) of up to 7%. TFPs can bind to duplex DNA in a sequence-specific manner and thereby stimulate DNA repair and recombination. The mice showed alleviation of anemia, improvement in RBC morphologies, and reversal of splenomegaly and extramedullary hematopoiesis with extremely low off-target effects in the genome compared to nuclease-based approaches, a key advantage of this technology. The other key advantage is that the components can be synthesized chemically and formulated into nanoparticles for simple IV administration. In the proposed work, we will test whether the same technology can be applied with the same efficiency for codon 6 of the β-globin gene, the site of the sickle cell disease mutation. Herein, our central hypothesis is to establish the feasibility of a new minimally invasive and innovative therapeutic paradigm for sickle cell disease: application of further advances in nucleic acid chemistry and nanoparticle technology for the site-directed editing of SCD mutation in the β-globin gene in vivo by facile IV infusion with high efficiency and low toxicity. This project will eventually help translate gene therapies for SCD to clinical practice through advances in nucleic acid chemistry and drug delivery. We will pursue Aim 1) Development of new generation chemically modified PNAs to boost gene editing at the SCD mutation site. The efficacy of the approach will be evaluated in a sickle cell disease mouse model. We will also explore the mechanism of PNA based gene editing. In Aim 2) Identify novel nanotherapeutics based strategies to deliver reagent to HSCs by enabling penetrance into the bone marrow following simple IV infusion of NP. This work will lay the foundation for a novel gene editing therapy for SCD that has a high efficiency and much lower risk of off-target effects compared to existing nuclease based approaches.
项目摘要 人们对基因编辑作为治疗人类遗传性疾病(如镰状细胞病)的一种手段非常感兴趣。 疾病(SCD)。许多努力已经集中在靶向核酸酶如CRISPR/Cas9上,因为定点核酸酶可以在靶向核酸酶上进行。 DNA损伤强烈促进同源重组(HR)。然而,临床应用的针对性 核酸酶受到基因组脱靶切割风险的挑战,这可能导致致癌。作为 另一种选择是,我们已经表明,化学修饰的三链体形成肽核酸(TFPs)和供体 通过聚乳酸-羟基乙酸共聚物(PLGA)静脉内(IV)递送的DNA(含校正碱基) 将纳米颗粒注入人β-地中海贫血小鼠模型中, 疾病,造血干细胞(HSC)中临床相关的β-珠蛋白基因校正频率高达 至7%。TFP可以以序列特异性的方式结合双链体DNA,从而刺激DNA修复, 重组小鼠表现出贫血的缓解,RBC形态的改善,以及 脾肿大和髓外造血,基因组脱靶效应极低, 到基于核酸酶的方法,这是这项技术的一个关键优势。另一个关键优势是, 这些成分可以化学合成并配制成纳米颗粒用于简单的IV给药。在 在拟议的工作中,我们将测试是否可以以相同的效率应用于密码子 6的β-珠蛋白基因,镰状细胞病突变的网站。在这里,我们的中心假设是建立 镰状细胞病新型微创创新治疗模式的可行性:应用 核酸化学和纳米颗粒技术在SCD定点编辑方面的进一步进展 通过高效低毒的简便静脉输注,在体内对β-珠蛋白基因进行突变。该项目将 通过核酸化学的进步,最终帮助将SCD的基因疗法转化为临床实践 和药物输送。我们将追求目标1)开发新一代化学改性的PNA, 在SCD突变位点进行基因编辑。该方法的有效性将在镰状细胞病中进行评估。 小鼠模型我们还将探索基于PNA的基因编辑的机制。目标2)确定新的 基于纳米治疗的策略,通过使药物能够进入骨髓来将试剂递送至HSC 简单静脉输注NP后这项工作将为SCD的新型基因编辑疗法奠定基础, 与现有的基于核酸酶的方法相比,具有高效率和低得多的脱靶效应风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raman Bahal其他文献

Raman Bahal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raman Bahal', 18)}}的其他基金

Development of pHLIP-phosphoantigen conjugates for lymphoma therapy
开发用于淋巴瘤治疗的 pHLIP-磷酸抗原缀合物
  • 批准号:
    10646988
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
Developing next generation synthetic nucleic acid analogous for sickle cell disease gene editing
开发类似于镰状细胞病基因编辑的下一代合成核酸
  • 批准号:
    10305678
  • 财政年份:
    2019
  • 资助金额:
    $ 39.03万
  • 项目类别:
Developing next generation synthetic nucleic acid analogous for sickle cell disease gene editing
开发类似于镰状细胞病基因编辑的下一代合成核酸
  • 批准号:
    10535448
  • 财政年份:
    2019
  • 资助金额:
    $ 39.03万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了