Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders

遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制

基本信息

项目摘要

PROJECT SUMMARY In this project we will bridge the traditionally largely distinct fields of quantitative genetics and mechanistic biology to obtain a mechanistic understanding of regulatory effects of genetic variants in humans. Leveraging on large human data sets providing parallel whole genome and transcriptome sequencing data, we will extend proof-of-principle studies and computational approaches developed and validated in model organisms to achieve improved functional interpretation of GWAS loci associated to mental health disorders. We focus specifically on the role of transcription factors as both upstream regulators of genetic risk variants as well as mediators of downstream network-level effects. As Aim 1, we will develop extend methods to allow accurate modeling of transcription factor activity from transcriptome data from large cohorts of human tissue samples in GTEx, PsychENCODE, and TOPMed cohorts. These data will be used in Aim 2 to dissect the mechanisms underlying proximal genetic regulatory variants in cis. We hypothesize that dynamics of transcription factor activity and binding modifies the effect size of genetic regulatory variants across individuals, tissues, and cell types, and that by modeling this relationship we can detect TFs regulating specific regulatory variants and noncoding disease-associated loci. In parallel Aim 3, we will map network-level trans-acting genetic variants for inter-individual variation in TF activity. Going beyond treating TF activity as a tissue-specific parameter of the cellular environment, we will now consider it as a variable quantitative trait itself, and by GWAS/TWAS for inferred TF activity, we map specific polymorphisms that affect TF activity within each tissue. We anticipate that the trans-acting loci discovered in this analysis will be of major interest not only to basic biology of regulatory networks, but also for explaining GWAS associations to complex diseases, and to mental health in particular.
项目概要 在这个项目中,我们将弥合传统上截然不同的定量遗传学和机械学领域 生物学以获得对人类遗传变异的调节作用的机械理解。杠杆作用 在提供并行全基因组和转录组测序数据的大型人类数据集上,我们将扩展 在模型生物体中开发和验证原理验证研究和计算方法,以实现 改进了与精神健康障碍相关的 GWAS 位点的功能解释。我们专注 特别是转录因子作为遗传风险变异上游调节因子的作用以及 下游网络水平效应的中介者。作为目标 1,我们将开发扩展方法以允许准确的 根据大量人体组织样本的转录组数据对转录因子活性进行建模 在 GTEx、PsychENCODE 和 TOPMed 队列中。这些数据将用于目标 2 来剖析机制 顺式中潜在的近端遗传调控变异。我们假设转录因子的动力学 活性和结合改变个体、组织和细胞中基因调控变异的效应大小 类型,通过对这种关系进行建模,我们可以检测调节特定调节变体的转录因子, 非编码疾病相关位点。在平行目标 3 中,我们将绘制网络级反式作用遗传变异图 TF 活性的个体间差异。超越将 TF 活性视为组织特异性参数 的细胞环境,我们现在将其视为一个可变的数量性状本身,并通过 GWAS/TWAS 进行 根据推断的 TF 活性,我们绘制了影响每个组织内 TF 活性的特定多态性。我们预计 在该分析中发现的反式作用基因座不仅对调控的基础生物学具有重大意义 网络,而且还用于解释 GWAS 与复杂疾病,特别是与心理健康的关联。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harmen J Bussemaker其他文献

Harmen J Bussemaker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harmen J Bussemaker', 18)}}的其他基金

Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
  • 批准号:
    10550151
  • 财政年份:
    2015
  • 资助金额:
    $ 70.78万
  • 项目类别:
Dissecting the genetic and molecular networks underlying longevity and aging
剖析长寿和衰老背后的遗传和分子网络
  • 批准号:
    9145438
  • 财政年份:
    2015
  • 资助金额:
    $ 70.78万
  • 项目类别:
Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
  • 批准号:
    10293597
  • 财政年份:
    2015
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
  • 批准号:
    7943348
  • 财政年份:
    2009
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
  • 批准号:
    6934499
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
  • 批准号:
    8584808
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
  • 批准号:
    6823537
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
  • 批准号:
    7840450
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
  • 批准号:
    7242590
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
  • 批准号:
    8069368
  • 财政年份:
    2004
  • 资助金额:
    $ 70.78万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 70.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了