Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
基本信息
- 批准号:9886483
- 负责人:
- 金额:$ 70.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAlgorithmsAllelesAnimal ModelAttentionBindingBinding SitesBiologyBipolar DepressionBipolar DisorderCRISPR interferenceCatalogsCellsChIP-seqChromosome MappingClinicalComplexComputing MethodologiesDNADNA BindingDNA-Protein InteractionDataData SetDiseaseEnvironmentGene ExpressionGenesGeneticGenetic DeterminismGenetic DiseasesGenetic PolymorphismGenetic RiskGenetic TranscriptionGenetic VariationGenomeGenomicsGenotype-Tissue Expression ProjectHumanHuman GeneticsIn VitroIndividualInstructionInterventionKnowledgeLightLinear ModelsMapsMediator of activation proteinMental HealthMental disordersMethodologyMethodsModelingMolecularNuclearPathway interactionsPharmacologyPhysiologicalPopulationPost-Translational Protein ProcessingProteinsQuantitative GeneticsQuantitative Trait LociRegulator GenesRegulatory ElementRegulonResearch PersonnelRiskRoleSchizophreniaTherapeuticTissue SampleTissuesTrans-Omics for Precision MedicineUnipolar DepressionUntranslated RNAVariantautism spectrum disorderbasecell typecohortdesigndisease phenotypedisorder riskexperimental studyfunctional genomicsgenetic analysisgenetic associationgenetic variantgenome sequencinggenome wide association studygenome-widehuman datahuman diseasehuman tissueimprovedinnovationinter-individual variationinterestmRNA Expressionpromoterrare variantrisk varianttraittranscription factortranscriptometranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY
In this project we will bridge the traditionally largely distinct fields of quantitative genetics and mechanistic
biology to obtain a mechanistic understanding of regulatory effects of genetic variants in humans. Leveraging
on large human data sets providing parallel whole genome and transcriptome sequencing data, we will extend
proof-of-principle studies and computational approaches developed and validated in model organisms to achieve
improved functional interpretation of GWAS loci associated to mental health disorders. We focus
specifically on the role of transcription factors as both upstream regulators of genetic risk variants as well as
mediators of downstream network-level effects. As Aim 1, we will develop extend methods to allow accurate
modeling of transcription factor activity from transcriptome data from large cohorts of human tissue samples
in GTEx, PsychENCODE, and TOPMed cohorts. These data will be used in Aim 2 to dissect the mechanisms
underlying proximal genetic regulatory variants in cis. We hypothesize that dynamics of transcription factor
activity and binding modifies the effect size of genetic regulatory variants across individuals, tissues, and cell
types, and that by modeling this relationship we can detect TFs regulating specific regulatory variants and
noncoding disease-associated loci. In parallel Aim 3, we will map network-level trans-acting genetic variants
for inter-individual variation in TF activity. Going beyond treating TF activity as a tissue-specific parameter
of the cellular environment, we will now consider it as a variable quantitative trait itself, and by GWAS/TWAS for
inferred TF activity, we map specific polymorphisms that affect TF activity within each tissue. We anticipate that
the trans-acting loci discovered in this analysis will be of major interest not only to basic biology of regulatory
networks, but also for explaining GWAS associations to complex diseases, and to mental health in particular.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harmen J Bussemaker其他文献
Harmen J Bussemaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harmen J Bussemaker', 18)}}的其他基金
Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
- 批准号:
10550151 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Dissecting the genetic and molecular networks underlying longevity and aging
剖析长寿和衰老背后的遗传和分子网络
- 批准号:
9145438 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Integrative analysis of genetic variation and transcription factor networks to elucidate mechanisms of mental health disorders
遗传变异和转录因子网络的综合分析以阐明精神健康障碍的机制
- 批准号:
10293597 - 财政年份:2015
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
7943348 - 财政年份:2009
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
6934499 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
8584808 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
6823537 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
8069368 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring regulatory circuitry from microarray data
从微阵列数据推断调节电路
- 批准号:
7242590 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
Inferring gene regulatory circuitry from functional genomics data
从功能基因组数据推断基因调控电路
- 批准号:
7840450 - 财政年份:2004
- 资助金额:
$ 70.78万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 70.78万 - 项目类别:
Continuing Grant














{{item.name}}会员




