Structural basis of mRNA decapping in poxviruses

痘病毒 mRNA 脱帽的结构基础

基本信息

  • 批准号:
    9760335
  • 负责人:
  • 金额:
    $ 6.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract Viruses have developed many unique strategies to evade the host immune response in the pursuit of a common goal: to proliferate. In fact, most viruses use multiple tactics simultaneously to achieve this goal. Such is the case for poxviruses which have at least three mechanisms to prevent their hosts from detecting dsRNA, thereby preventing the activation of host innate immune sensors. One of these mechanisms is to use viral encoded decapping enzymes D9 and D10 to clear accumulating dsRNA by removing the protective 5¢ cap of host and viral mRNAs, committing them to degradation by cellular 5¢-3¢ exoribonuclease Xrn1. The fact that D9 and D10 are expressed at different stages of the viral replication cycle and early studies indicate they recognize capped mRNA differently suggests D9 and D10 have distinct functions, perhaps targeting different mRNAs during infection. However, despite the significant role these enzymes play in host immune evasion and the extensive body of literature describing poxvirus pathogenesis, we lack an effective molecular understanding of how they both recognize their capped mRNA and catalyze cap hydrolysis to evade the host immune response. This research plan seeks to combine biochemistry, structural biology and virology to establish the molecular basis with which these enzymes recognize and hydrolyze their substrates, and how their substrate specificity contributes to poxvirus pathogenesis. To determine if substrate specificity is conferred during substrate binding or the catalytic step, in vitro binding and activity assays will be performed using various substrates relevant to the different mRNAs present during poxvirus infection. The molecular determinants that govern substrate recognition will be identified using high- and low-resolution structural techniques. The combination of high- and low-resolution techniques will build a more complete understanding of the specific molecular interactions, conformational changes, and higher order assembly that contribute to function. Mutational analyses using in vitro binding and activity assays in addition to cell-based infectivity assays will be used to link structure to phenotype and to validate the biochemical and biological relevance of the structural model. Lastly, protein-protein interaction partners will be identified using affinity purification coupled with mass spectrometry to determine if substrates are selected by enzyme-substrate binding per se or if protein cofactors assist in recruiting D9 and D10 to target mRNAs. Together, these studies will provide a molecular understanding of how substrate recognition and protein-protein interactions with poxvirus decapping enzymes control target mRNA selection and cap cleavage during infection. Understanding poxvirus decapping enzyme activity at the molecular level is an important step toward a comprehensive model of mRNA stability during poxvirus infection that can be used in developing poxvirus tools for use in immunotherapy as well as to create novel antiviral therapeutics as a defense against future threats of epidemics and bioterrorism.
项目摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Peters其他文献

Jessica Peters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了