Regulation of calcium signaling in the human malaria parasite
人类疟疾寄生虫中钙信号传导的调节
基本信息
- 批准号:9759759
- 负责人:
- 金额:$ 18.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-10 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAntimalarialsAreaBackBindingBinding ProteinsBiochemicalBiologicalBiological AssayBiological ProcessBiologyBiotinBuffersCRISPR/Cas technologyCalciumCalcium SignalingCalcium ionCalnexinCellsCessation of lifeClinicClinicalCytoplasmCytosolDataDefectDiseaseDrug TargetingDrug resistanceDrug usageEndoplasmic ReticulumErythrocytesGenesGeneticGenomeGoalsGrowthHomeostasisHumanInfectionInositolIonsKnock-outLabelLife Cycle StagesLigaseMalariaMalaria VaccinesMolecularOrganellesOrganismParasitesPathway interactionsPlasmodiumPlasmodium falciparumPopulationProteinsRegulationResearchResistanceResistance developmentRoleRyanodine Receptor Calcium Release ChannelSexual DevelopmentSignal PathwaySignal TransductionSystemTransmembrane Domainasexualbaseconditional mutantdrug developmentexperimental studyfallsgene therapyhuman diseaseknock-downloss of functionmortalitymutantnew therapeutic targetnovelobligate intracellular parasiteparasite invasionreceptorresistant strainresponseuptake
项目摘要
Project Summary
The deadliest form of human malaria is caused by the eukaryotic parasite Plasmodium falciparum,
which is responsible for nearly 450,000 deaths every year. Nearly half of the world’s population lives in
areas where malaria is endemic, resulting in almost ~250 million infections each year. As yet, there are
no effective vaccines against malaria and antimalarial drugs are the mainstay of treatment.
Unfortunately, the parasite has gained resistance to all antimalarial drugs used in the clinic and these
drug-resistant strains are spreading throughout the world. Thus, it is crucial that we constantly identify
potential novel drug targets to stay ahead of this deadly disease. Understanding the signaling pathways
that drive the biology of the parasite will provide new antimalarial drug targets that are unique to the
parasite and absent in the host. Calcium ion (Ca2+) signaling has emerged as one of the major drivers
of the life cycle of P. falciparum. The goal of this proposal is to study Ca2+ signaling and the pathways
that regulate ion fluctuations in malaria parasites. In P. falciparum, similar to other eukaryotic
organisms, the cytoplasmic levels of Ca2+ is very low and its concentration rises in the cytoplasm in
response to specific signals. This increased cytosolic Ca2+ results in a signaling cascade that that is
essential for the life cycle of the parasite. Once the signal subsides, the levels of cytosolic Ca2+ falls
back via uptake into intracellular Ca2+ stores, such as the endoplasmic reticulum. The P. falciparum
genome lacks several canonical genes that are known to be essential for Ca2+ signaling in other well-
studied eukaryotic organisms. Therefore, we will target the only soluble protein with Ca2+ binding
domains that localizes to the major intracellular Ca2+ store, the endoplasmic reticulum. We hypothesize
that this protein regulates the release and uptake of Ca2+ from this organelle. Our preliminary data show
that this gene is essential for the asexual life cycle of the parasite and is required for the invasion of the
parasite into its host red blood cell. We will utilize genetic, cellular, and biochemical approaches to
define the role of this gene in regulating Ca2+ signaling and the invasion of P. falciparum into the host
cell. These include the use of genetically encoded Ca2+ indicators to reveal the fluctuations of Ca2+
during the intraerythrocytic life cycle of P. falciparum as well as the effect of genetic interventions on the
homeostasis of Ca2+. A second independent proximity-based labeling approach will be undertaken to
isolate and discover novel partners of the targeted gene to define the network of genes required to
regulate the flow of Ca2+ within the P. falciparum infected human red blood cells. Achieving the aims of
this study will reveal the essential parasite-specific pathways that regulate Ca2+ signaling, which can be
targeted for antimalarial drug development.
项目摘要
最致命的人类疟疾是由真核寄生虫恶性疟原虫引起的,
每年造成近45万人死亡世界上将近一半的人口生活在
在疟疾流行的地区,每年有近2.5亿人感染。到目前为止,
没有有效的疟疾疫苗,抗疟药物是治疗的主要手段。
不幸的是,这种寄生虫对临床上使用的所有抗疟药物都产生了抗药性,
抗药性菌株正在全世界蔓延。因此,至关重要的是,我们要不断地识别
潜在的新型药物靶点,以保持领先于这种致命的疾病。了解信号通路
驱动寄生虫生物学的基因将提供新的抗疟药物靶点,
寄生虫和缺席的主机。钙离子(Ca 2+)信号传导已成为主要驱动因素之一,
恶性疟原虫的生命周期本研究的目的是研究Ca 2+信号转导及其途径,
调节疟疾寄生虫体内离子的波动。在恶性疟原虫中,与其他真核生物相似,
在生物体中,Ca 2+的细胞质水平非常低,其浓度在细胞质中升高,
对特定信号的反应。这种增加的胞质Ca 2+导致信号级联,
对寄生虫的生命周期至关重要。一旦信号减弱,胞质Ca 2+福尔斯水平下降
通过摄取回到细胞内的Ca 2+储存,如内质网。恶性疟原虫
基因组缺乏几个典型的基因,这些基因是已知的在其他井-
研究真核生物。因此,我们将靶向与Ca 2+结合的唯一可溶性蛋白质
结构域定位于主要的细胞内钙库,内质网。我们假设
这种蛋白质调节细胞器中钙离子的释放和吸收。我们的初步数据显示
这种基因对寄生虫的无性生活周期至关重要,并且是寄生虫入侵所必需的。
寄生虫进入宿主的红细胞我们将利用遗传、细胞和生物化学方法,
明确该基因在调节Ca 2+信号和恶性疟原虫侵入宿主中的作用
cell.这些措施包括使用遗传编码的Ca 2+指标来揭示Ca 2+的波动
以及遗传干预对恶性疟原虫红细胞内生命周期的影响。
Ca 2+稳态。将采用第二种独立的基于邻近度的标记方法,
分离和发现靶基因的新伙伴,以确定所需的基因网络,
调节恶性疟原虫感染的人红细胞内Ca 2+的流动。实现
这项研究将揭示调节Ca 2+信号的寄生虫特异性途径,
用于抗疟疾药物开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silvia N Moreno其他文献
Silvia N Moreno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silvia N Moreno', 18)}}的其他基金
Divergent Calcium Channels of the Apicomplexan parasite Toxoplasma gondii
顶复门寄生虫弓形虫的不同钙通道
- 批准号:
10681807 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Validation of the ubiquinone synthesis pathway of Toxoplasma gondii as a novel drug target
弓形虫泛醌合成途径作为新药物靶点的验证
- 批准号:
10707505 - 财政年份:2022
- 资助金额:
$ 18.88万 - 项目类别:
Validation of the ubiquinone synthesis pathway of Toxoplasma gondii as a novel drug target
弓形虫泛醌合成途径作为新药物靶点的验证
- 批准号:
10608408 - 财政年份:2022
- 资助金额:
$ 18.88万 - 项目类别:
Elements of the Ca2+ signal transduction pathway of Toxoplasma gondii
弓形虫Ca2信号转导通路的元件
- 批准号:
10154355 - 财政年份:2020
- 资助金额:
$ 18.88万 - 项目类别:
Anti-Toxoplasma isoprenoid pathway inhibitors and the host immune response
抗弓形虫类异戊二烯途径抑制剂和宿主免疫反应
- 批准号:
10117182 - 财政年份:2020
- 资助金额:
$ 18.88万 - 项目类别:
Elements of the Ca2+ signal transduction pathway of Toxoplasma gondii
弓形虫Ca2信号转导通路的元件
- 批准号:
10318661 - 财政年份:2020
- 资助金额:
$ 18.88万 - 项目类别:
The Toxoplasma apicoplast and calcium signaling
弓形虫顶端质体和钙信号传导
- 批准号:
9384713 - 财政年份:2016
- 资助金额:
$ 18.88万 - 项目类别:
The Toxoplasma apicoplast and calcium signaling
弓形虫顶端质体和钙信号传导
- 批准号:
10051384 - 财政年份:2016
- 资助金额:
$ 18.88万 - 项目类别:
The Toxoplasma apicoplast and calcium signaling
弓形虫顶端质体和钙信号传导
- 批准号:
9229418 - 财政年份:2016
- 资助金额:
$ 18.88万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




