University of Michigan Proteogenomics Data Analysis Center

密歇根大学蛋白质组学数据分析中心

基本信息

  • 批准号:
    9759865
  • 负责人:
  • 金额:
    $ 75.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT This is an application to establish the University of Michigan Proteogenomic Data Analysis Center (UM- PGDAC). The National Cancer Institute (NCI) has made significant investments in new technology platforms for cancer proteomics through the Clinical Proteomic Tumor Analysis Consortium (CPTAC) initiative. Proteomics provides complementary information not apparent from the analysis of genomic and transcriptomic data alone. First, it is critical to identify which of the thousands of novel or previously poorly characterized transcripts or sequence variants discovered using genomic and transcriptomic approaches are expressed at the protein level, prioritizing such variants for subsequent validation studies. Second, integration of quantitative information across multiple data types has emerged as a powerful strategy for reconstructing targetable pathways in cancer and for nomination of potential drug targets. At the same time, sophisticated, integrative analyses across genome and proteome data require advanced bioinformatics tools and stringent quality control measures. UM-PGDAC is uniquely positioned to implement advanced bioinformatics infrastructure to address these challenges and apply it across CPTAC data. It brings together a multi-disciplinary team of scientists who are leading experts in the areas of computational proteomics, transcriptomics, genomics, cancer systems biology and precision oncology. The team is anchored at the Michigan Center for Translational Pathology (MCTP), which has a long history of successful collaborations between the individual investigators. UM-PGDAC builds upon more than a decade of highly relevant work that resulted in the development of a comprehensive infrastructure required for proteogenomics and multi- omics data integration research. UM-PGDAC investigators will work to further improve the speed and accuracy of proteogenomics analyses. The integrated genome/transcriptome/proteome pipelines used by the UM-PDGAC will be enhanced with automated data visualization capabilities and report generation tools for presenting the findings to cancer biologists in a transparent and easy to interpret manner. UM-PGDAC will work collaboratively with other members of the CPTAC to ensure minimal duplication of efforts, efficient exchange of data and bioinformatics methods and tools and interoperability via the use of common file formats and data standards. Building upon its extensive experience in the area of biomarker discovery and precision oncology, further enhanced through participation of UM-PGDAC investigators in the EDRN, SPORE, and other NIH funded initiatives, UM-PGDAC will engage in a second round of prioritization work to select candidate cancer-specific proteins and peptides for subsequent targeted validation using multiplex proteomic assays. Finally, UM-PGDAC will take advantage of a unique opportunity – in the form of the NCI funded T32 Proteome Informatics Training Program at the University of Michigan – to create a unique environment for training the new generation of cancer researchers versed in proteomics technology.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARUL M CHINNAIYAN其他文献

ARUL M CHINNAIYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARUL M CHINNAIYAN', 18)}}的其他基金

Michigan-VUMC Biomarker Characterization Center
密歇根-VUMC 生物标志物表征中心
  • 批准号:
    10483357
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Michigan-VUMC Biomarker Characterization Center
密歇根-VUMC 生物标志物表征中心
  • 批准号:
    10684207
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Admin-Core-001
管理核心-001
  • 批准号:
    10707664
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10483358
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Biomarker Developmental Laboratory
生物标志物发育实验室
  • 批准号:
    10483359
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Biomarker Developmental Laboratory
生物标志物发育实验室
  • 批准号:
    10684233
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10684228
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
Exploring Precision Oncology: From Gene Fusions to lncRNAs
探索精准肿瘤学:从基因融合到 lncRNA
  • 批准号:
    10219190
  • 财政年份:
    2018
  • 资助金额:
    $ 75.06万
  • 项目类别:
Exploring Precision Oncology: From Gene Fusions to lncRNAs
探索精准肿瘤学:从基因融合到 lncRNA
  • 批准号:
    10462574
  • 财政年份:
    2018
  • 资助金额:
    $ 75.06万
  • 项目类别:
Exploring Precision Oncology: From Gene Fusions to lncRNAs
探索精准肿瘤学:从基因融合到 lncRNA
  • 批准号:
    10000857
  • 财政年份:
    2018
  • 资助金额:
    $ 75.06万
  • 项目类别:

相似海外基金

Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
  • 批准号:
    488788
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
    Operating Grants
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
  • 批准号:
    10577186
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
  • 批准号:
    10717440
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
  • 批准号:
    10638347
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
  • 批准号:
    10749474
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
  • 批准号:
    10673458
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
  • 批准号:
    2884151
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
    Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
  • 批准号:
    10660668
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
  • 批准号:
    2239056
  • 财政年份:
    2023
  • 资助金额:
    $ 75.06万
  • 项目类别:
    Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
  • 批准号:
    468851650
  • 财政年份:
    2022
  • 资助金额:
    $ 75.06万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了