Towards a comprehensive multiscale 3D human interactome network

迈向全面的多尺度 3D 人类交互组网络

基本信息

  • 批准号:
    9520213
  • 负责人:
  • 金额:
    $ 38.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Almost all proteins function through interacting with other proteins. On average, a protein interacts with ~5 other protein partners in the current human interactome. Therefore, it is of great importance to accurately determine the interface of each interaction, in order to understand how each protein works with different partners to carry out different functions. In our previous Nature Biotechnology study, we implemented a proteome-scale homology modeling approach to generate the first 3D human structural interactome: the interface for each interaction in this network was determined at atomic resolution through co-crystal structures and homology models. Using our 3D interactome, we found that, among >1,800 known disease genes associated with two or more clinically distinctly disorders, pairs of mutations on the same gene but in different interfaces with different partners are significantly more likely to cause distinct diseases. However, only 4,150 human protein interactions have co-crystal structures and 2,921 have high-quality homology models. ~50,000 interactions (87% of the current human interactome) are not amenable to current structural modeling methods. Here, we propose to develop a big-data-driven machine-learning approach integrating biophysiochemical, evolutionary, structural, and population genetic features to identify interaction- specific interfaces for the whole human interactome. Because several key features are unavailable for many proteins and interactions, we propose an innovative approach to use an ensemble of random forest classifiers, named Ensemble Protein Interface Classifier (EPIC), to address this large-scale non-random missing data problem (Aim 1). The high throughput of our massively parallel Clone-seq and INtegrated PrOtein INteractome perTurbation screening (InPOINT) pipeline! uniquely enables us to perform real-time experimental parameter optimization (in Years 2-4 we will clone ~1,500 mutations and examine their impact on ~2,500 interactions every year to iteratively evaluate and refine EPIC; Aim 2). Finally, we will construct a comprehensive multiscale 3D interactome for all known human protein-protein interactions: we will collect/generate atomic- resolution structural models for interactions whenever possible (co-crystal structures and homology models); we will accurately determine interaction-specific interface residues and domains for the whole human interactome. We will deploy an interactive web portal to disseminate our results and allow functional genomic inference in the context of our structural interactome (Aim 3). Our comprehensive multiscale 3D human interactome and the accompanying web portal will greatly reduce the barrier-to-entry for performing systematic structural analysis on a large number of proteins and their interactions, and open the flood gates for such analyses in genomic studies.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyuan Yu其他文献

Haiyuan Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyuan Yu', 18)}}的其他基金

Towards a comprehensive multiscale 3D human interactome network
迈向全面的多尺度 3D 人类交互组网络
  • 批准号:
    9375803
  • 财政年份:
    2017
  • 资助金额:
    $ 38.42万
  • 项目类别:
Towards a comprehensive protein interactome network in Schizosaccharomyces pombe
粟酒裂殖酵母全面的蛋白质相互作用组网络
  • 批准号:
    8461576
  • 财政年份:
    2012
  • 资助金额:
    $ 38.42万
  • 项目类别:
Towards a comprehensive protein interactome network in Schizosaccharomyces pombe
粟酒裂殖酵母全面的蛋白质相互作用组网络
  • 批准号:
    8795726
  • 财政年份:
    2012
  • 资助金额:
    $ 38.42万
  • 项目类别:
Research supplement to promote diversity/Towards a comprehensive protein interact
促进多样性/实现全面的蛋白质相互作用的研究补充
  • 批准号:
    8554511
  • 财政年份:
    2012
  • 资助金额:
    $ 38.42万
  • 项目类别:
Towards a comprehensive protein interactome network in Schizosaccharomyces pombe
粟酒裂殖酵母全面的蛋白质相互作用组网络
  • 批准号:
    8294002
  • 财政年份:
    2012
  • 资助金额:
    $ 38.42万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
  • 批准号:
    2346286
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2348755
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
  • 批准号:
    24K05127
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
  • 批准号:
    DP240101848
  • 财政年份:
    2024
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Discovery Projects
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
  • 批准号:
    2231654
  • 财政年份:
    2023
  • 资助金额:
    $ 38.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了