Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
基本信息
- 批准号:9513446
- 负责人:
- 金额:$ 60.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAssessment toolBenchmarkingBenefits and RisksCaliforniaCaringCharacteristicsClinicalCodeCollaborationsComplexDataData SetDatabasesDecision MakingDiagnosticDictionaryDiseaseDocumentationDrug InteractionsElectronic Health RecordElementsEquilibriumErectile dysfunctionEvaluationFaceFeedbackFunctional disorderGoldGovernmentHealth PersonnelHealthcareIndividualInternetMalignant NeoplasmsMalignant neoplasm of prostateManualsMapsMeasuresMedicalMethodsModelingNewly DiagnosedOnline SystemsOntologyOperative Surgical ProceduresOutcomePatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPhenotypePolicy MakerProspective StudiesProstate Cancer therapyProstatectomyQuality of lifeRadiation therapyRecordsResearchRiskRisk AssessmentRoboticsSourceStructureSystemTestingTextTimeTreatment outcomeUntranslated RNAValidationVocabularyWorkanticancer researchbasecancer carecare deliverycare providersclinical caredata miningexperiencehealth care deliveryimprovedinnovationmalignant breast neoplasmmenneoplasm registrynovelpatient orientedpersonalized risk predictionpublic health relevancetooltreatment choiceurinaryweb-based tool
项目摘要
DESCRIPTION (provided by applicant): Prostate cancer is the most common malignancy in men. Newly diagnosed men face complex treatment choices, each with different risks of acquired patient-centered outcomes (e.g. urinary and erectile dysfunction). Currently, patients and clinicians cannot easily compare the trade-offs among patient-centered outcomes across different treatments because the empirical evidence regarding these trade-offs does not exist, because patient centered outcomes are not routinely recorded in assessable formats. However, electronic healthcare records (EHR) free text is a rich, untapped source of patient centered outcomes. We propose to assemble a robust data-mining workflow to efficiently and accurately capture treatment and outcome quality metrics from structured data and free-text in EHRs. We will put this evidence in the hands of both clinicians and patients through a web-based risk assessment tool. Our proposal has three innovative aspects. First, we will develop an EHR prostate cancer database that will allow for clinical care data to be analyzed alongside diagnostic details. Second, we will create novel ontological representations of quality metrics that will be public and reliably calculable across EHR-systems. Third, we will assemble a robust data- mining workflow that expands on existing methods by focusing on ontology-based dictionaries to annotate free text. Combining this set of innovative components will uniquely allow us to use existing EHRs to efficiently study the trade-offs among patient-centered outcomes across different treatments. In Aim 1 we will create the building blocks needed to identify quality metric data in EHRs. We will develop an EHR-database, map quality metrics to medical vocabularies and ontologies, and create electronic quality metric phenotypes. In Aim 2, we will expand our data-mining workflow with quality metric vocabulary and use it to gather data relevant to quality metrics. In Aim 3 we will develop a web-based tool that integrates the empirical evidence assessed in our first two aims with patient and clinical characteristics to estimate patients' personalized risks of patient centered outcomes across treatments. Our web tool will display such personalized risk predictions, to help clinicians and patients choose a treatment option that offers the best predicted quality of life given the importance they assign to
each patient-centered outcome. This proposal will address a critical gap in evidence for prostate cancer treatment and research by providing clinicians and patients with empirical evidence needed to compare the trade-offs among patient centered outcomes across different treatments. Our work is consistent with our nation's focus on EHR `meaningful use' and the comprehensive assessment of healthcare delivery, and with NCI's focus on improving the quality of cancer care delivery.
描述(由申请人提供):前列腺癌是男性最常见的恶性肿瘤。新诊断的男性面临着复杂的治疗选择,每种治疗选择都有不同的以患者为中心的获得性结局风险(例如泌尿和勃起功能障碍)。目前,患者和临床医生无法轻松比较不同治疗中以患者为中心的结局之间的权衡,因为不存在关于这些权衡的经验证据,因为以患者为中心的结局未以可评估的格式进行常规记录。然而,电子医疗记录(EHR)自由文本是一个丰富的,未开发的来源,以患者为中心的结果。我们建议组装一个强大的数据挖掘工作流程,以有效和准确地捕获治疗和结果的质量指标,从结构化数据和EHR中的自由文本。我们将通过基于网络的风险评估工具将这些证据交给临床医生和患者。我们的建议有三个创新方面。首先,我们将开发一个EHR前列腺癌数据库,允许临床护理数据与诊断细节一起进行分析。第二,我们将创建新的质量指标的本体论表示,这将是公共的,可靠地计算跨EHR系统。第三,我们将组装一个强大的数据挖掘工作流程,通过专注于基于本体的字典来注释自由文本,扩展现有的方法。结合这组创新组件将使我们能够使用现有的EHR来有效地研究以患者为中心的不同治疗结果之间的权衡。在目标1中,我们将创建识别EHR中质量度量数据所需的构建块。我们将开发一个EHR数据库,将质量指标映射到医学词汇和本体,并创建电子质量指标表型。在目标2中,我们将使用质量度量词汇表扩展数据挖掘工作流,并使用它来收集与质量度量相关的数据。在目标3中,我们将开发一种基于网络的工具,将前两个目标中评估的经验证据与患者和临床特征相结合,以估计患者在治疗中以患者为中心的结局的个性化风险。我们的网络工具将显示这种个性化的风险预测,以帮助临床医生和患者选择一种治疗方案,提供最佳的预测生活质量,因为他们认为
以患者为中心的结果。该提案将通过为临床医生和患者提供经验证据来比较以患者为中心的不同治疗结果之间的权衡,从而解决前列腺癌治疗和研究证据中的关键差距。我们的工作与我们国家对EHR“有意义的使用”和医疗保健服务全面评估的关注以及NCI对提高癌症护理服务质量的关注是一致的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tina Hernandez-Boussard其他文献
Tina Hernandez-Boussard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tina Hernandez-Boussard', 18)}}的其他基金
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10646490 - 财政年份:2019
- 资助金额:
$ 60.32万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10165821 - 财政年份:2019
- 资助金额:
$ 60.32万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10410453 - 财政年份:2019
- 资助金额:
$ 60.32万 - 项目类别:
Advancing Knowledge Discovery for Postoperative Pain Management
推进术后疼痛管理的知识发现
- 批准号:
10019592 - 财政年份:2019
- 资助金额:
$ 60.32万 - 项目类别:
Improving Quality of postoperative pain care through innovative use of electronic health records
通过电子健康记录的创新使用提高术后疼痛护理的质量
- 批准号:
8943308 - 财政年份:2015
- 资助金额:
$ 60.32万 - 项目类别:
Improving Quality of postoperative pain care through innovative use of electronic health records
通过电子健康记录的创新使用提高术后疼痛护理的质量
- 批准号:
9302313 - 财政年份:2015
- 资助金额:
$ 60.32万 - 项目类别:
Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
- 批准号:
9102039 - 财政年份:2015
- 资助金额:
$ 60.32万 - 项目类别:
Utilizing Electronic Health Records to Measure and Improve Prostate Cancer Care
利用电子健康记录来衡量和改善前列腺癌护理
- 批准号:
8885448 - 财政年份:2015
- 资助金额:
$ 60.32万 - 项目类别:
Prioritizing Quality Improvement in Surgery through Patient Safety Indicators.
通过患者安全指标优先提高手术质量。
- 批准号:
8454224 - 财政年份:2010
- 资助金额:
$ 60.32万 - 项目类别:
Prioritizing Quality Improvement in Surgery through Patient Safety Indicators.
通过患者安全指标优先提高手术质量。
- 批准号:
8255328 - 财政年份:2010
- 资助金额:
$ 60.32万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 60.32万 - 项目类别:
Continuing Grant