Rescuing Kidneys at Risk of Discard

拯救面临废弃风险的肾脏

基本信息

  • 批准号:
    9889956
  • 负责人:
  • 金额:
    $ 70.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary. Kidney transplantation (KT) is a superior alternative to dialysis for many patients with respect to longevity, quality of life, morbidity, and the cost of End-Stage Renal Disease (ESRD) care. However, of the 95,000 patients waitlisted for a KT in 2017, less than 20,000 received a KT. In the same year, about 4,000 patients died, while another 4,700 were removed from the waitlist because they were considered too sick to transplant. Despite the long waitlist, more than 3,500 (19%) of the deceased donor kidneys were discarded. “No Recipient Found” was the stated reason for discarding 1,325 of the donated kidneys. The discard rate increases significantly for the low-quality kidneys, reaching as high as 60% for the kidneys in the lowest quality decile. This discard occurs even though many discarded kidneys, even those in the lowest quality decile, would have conferred significant survival benefits to some recipients relative to remaining on dialysis. The current kidney allocation system does not efficiently allocate kidneys at high risk of discard. The patient prioritization algorithm does not quickly identify patients who will benefit most from such kidneys, and the donated kidneys are wasted. Improvements to the kidney allocation system are needed to reduce the number of discarded kidneys while allocating them equitably to patients who would most benefit. However, revising allocation policy is challenging because patients and transplant professionals must weigh the risks and benefits of accepting a low-quality kidney against the risks of waiting for a much higher quality kidney. The transplant community and patient preferences in accepting low-quality kidneys are unknown. The proposed study aims to develop kidney allocation algorithms that rescue viable deceased donor kidneys from discard. The developed algorithms will (i) identify kidneys at risk of discard using measures such as Kidney Donor Profile Index, or a novel Kidney Discard Risk Score; (ii) identify patient populations, such as those with longer waiting times to transplant or low functional status, who will benefit the most from viable kidneys. Preferences of the transplant clinicians (Surgeons and Nephrologists) and patients (on dialysis and transplant recipients) will be elicited using discrete-choice experiments that will quantify allocation efficiency and fairness tradeoffs for kidneys at risk of discard. A discrete event simulation software engine will be developed. The simulation engine will incorporate transplant center and patient-specific kidney acceptance behaviors, and the developed allocation algorithms. The benefits of different allocation algorithms will be evaluated in the simulation. Representatives from the United Network of Organ Sharing, Association of Organ Procurement Organizations, and the American Association of Kidney Patients will serve on the scientific advisory board. The developed allocation algorithms will help save approximately 1,000 lives yearly by reducing kidney discards. The research outcome will be widely disseminated to the transplant community to foster rapid implementation.
项目摘要。肾移植(KT)是一种上级替代透析的许多患者, 在寿命、生活质量、发病率和终末期肾病(ESRD)护理费用方面。然而,在这方面, 在2017年等待KT的95,000名患者中,只有不到20,000人接受了KT。同年,约 4,000名患者死亡,另有4,700名患者因被认为病情过重而被从等待名单中删除 移植尽管等待名单很长,但仍有超过3,500(19%)的已故捐赠者肾脏被丢弃。 “没有发现肾脏”是丢弃1,325个捐赠肾脏的原因。丢弃率 对于低质量的肾脏显著增加,对于最低质量的肾脏达到高达60% 十分位数。即使许多被丢弃的肾脏,即使是那些在最低质量的十分位中的肾脏, 相对于维持透析,对某些接受者具有显著的生存益处。 目前的肾脏分配系统不能有效地分配具有高丢弃风险的肾脏。的 患者优先化算法不能快速识别将从这种肾脏中获益最多的患者,并且 捐献的肾脏被浪费了需要改进肾脏分配系统,以减少 我们需要减少被丢弃的肾脏数量,同时将它们公平地分配给最受益的患者。然而,在这方面, 修改分配政策具有挑战性,因为患者和移植专业人员必须权衡风险, 接受低质量肾脏的好处与等待高质量肾脏的风险。的 移植社区和患者接受低质量肾脏的偏好尚不清楚。 这项研究的目的是开发肾脏分配算法,以拯救可行的死者。 捐赠的肾脏所开发的算法将(i)使用 诸如肾脏供体概况指数或新的肾脏丢弃风险评分的测量;(ii)识别患者 人群,如等待移植时间较长或功能状态较低的人群, 大部分来自存活的肾脏移植临床医生(外科医生和肾病学家)和患者的偏好 (on透析和移植受者)将使用离散选择实验来引出, 分配效率和公平性的权衡对于有丢弃风险的肾脏。离散事件仿真软件 引擎将被开发。模拟引擎将整合移植中心和患者特定肾脏 接受行为,以及开发的分配算法。不同分配算法的优势 将在模拟中进行评估。 器官共享联合网络、器官采购协会代表 组织和美国肾脏病患者协会将担任科学顾问委员会。的 开发的分配算法将通过减少肾脏丢弃,每年帮助挽救约1 000人的生命。 研究结果将广泛传播给移植界,以促进快速实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Mehrotra其他文献

Sanjay Mehrotra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Mehrotra', 18)}}的其他基金

Rescuing Kidneys at Risk of Discard
拯救面临废弃风险的肾脏
  • 批准号:
    10370316
  • 财政年份:
    2019
  • 资助金额:
    $ 70.01万
  • 项目类别:
Promoting Utilization of Kidneys by Improving Patient Level Decision Making
通过改善患者决策来促进肾脏的利用
  • 批准号:
    9019712
  • 财政年份:
    2016
  • 资助金额:
    $ 70.01万
  • 项目类别:
Unassisted Blood Pressure Monitoring Using Arterial Tonometry and Photoplethysmography
使用动脉张力测定法和光电容积描记法进行无辅助血压监测
  • 批准号:
    8936340
  • 财政年份:
    2015
  • 资助金额:
    $ 70.01万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了