Automated Object Contouring Methods & Software for Radiotherapy Planning
自动对象轮廓方法
基本信息
- 批准号:9761481
- 负责人:
- 金额:$ 87.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-10 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAnatomyAutomationBackBlindedBody RegionsChestClinicalCollaborationsComputer softwareCountryData QualityData SetDevelopmentDigital Imaging and Communications in MedicineEvaluationEvaluation StudiesGrantHead and neck structureHealth PersonnelImageImageryIndustryInferiorInvestigationInvestmentsLearningLocationMalignant NeoplasmsMalignant neoplasm of thoraxManualsMedical ImagingMedical centerMethodsModelingMorphologic artifactsNamesObject AttachmentOrganOutcomeOutputPathologyPatientsPhasePopulation HeterogeneityProcessProtocols documentationRadiation OncologistRadiation therapyReaderResearchRiskScanningService delivery modelServicesSliceSpecific qualifier valueSystemTechniquesTestingThree-Dimensional ImageTimeWorkbaseclinical efficacycloud baseddeep learningimage processingimprovedinterestlearning networklearning strategyneural networknovel strategiesobject recognitionprototyperesearch clinical testingsoftware as a servicesoftware developmentsoftware systemstreatment centertreatment planningvirtual
项目摘要
Abstract
In 2015, 1,658,370 new cancer cases are estimated to occur in the US, where nearly two-thirds will have radiation
therapy (RT). Given that there are over 2,300 RT centers in the US, and current systems for contouring organs
at risk (OARs) rely mostly on manual methods, there is a strong commercial opportunity for producing a software
system that can contour OARs in medical images at a high degree of automation and for impacting current
practice of RT planning. Encouraged by our strong Phase I results in thoracic and head and neck (H&N) body
regions compared to current industry systems, we seek the accuracy, efficiency, and clinical acceptance of the
contours output by our software product to significantly exceed those of existing systems. Our overall aim for
Phase II is to advance the algorithms and prototype software developed in Phase I into a leading commercial
software product, and demonstrate its efficacy in multiple medical centers across the country with diverse
populations. Phase II specific aims are three-fold: (1) Further advance the automatic anatomy recognition
algorithms from Phase I using advanced deep learning techniques. (2) Develop a cloud-based software auto
contouring service. (3) Perform clinical evaluation of the new software on H&N and thoracic cases.
Aim 1 will be accomplished in three stages: (a) Automating the process of defining the body region on given
patient CT studies, which is currently done manually in our system, via a new concept of virtual landmarks using
deep learning techniques. (b) Improving object recognition/ localization accuracy from the current 2 voxels for
“good” quality data sets to 1 voxel and from 4-5 voxels for “poor” quality data sets to 2-3 voxels by using virtual
landmarks to learn object relationships. (c) Improving object delineation by combining object localization methods
with deep learning techniques applied to the vicinity of the localized objects to bring boundary distance accuracy
within 1 voxel. Aim 2 will be achieved by developing a cloud-based Software-as-a-Service model to implement
the software that incorporates the algorithms. To accomplish Aim 3, an evaluation study involving four academic
RT centers will be undertaken to assess the efficiency, accuracy, and acceptability of the contours output by the
new software. To assess efficiency, contouring time taken by the current clinical process will be compared to the
time taken by the new software method plus any manual adjustment needed. Accuracy will be assessed by
comparing software output to carefully prepared ground truth contours. Acceptability will be determined by
conducting a blinded reader study, where an acceptability score (1-5) is given by radiation oncologists to software
produced contours, ground truth contours, and contours produced by the normal clinical process, and comparing
these scores.
Expected clinical outcomes are significantly improved clinical efficiency/ acceptability of contouring compared to
current practice.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Owens其他文献
Steve Owens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 87.34万 - 项目类别:
Continuing Grant