Accurate and reliable computational dosimetry and targeting for transcranial magnetic stimulation
准确可靠的计算剂量测定和经颅磁刺激靶向
基本信息
- 批准号:9892046
- 负责人:
- 金额:$ 7.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2020-09-09
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyBrainBrain DiseasesClinicalComputer ModelsComputer SimulationComputing MethodologiesConfidence IntervalsDataDevelopmentDoseDrug or chemical Tissue DistributionElectricityElectroencephalographyElectromagnetic FieldsEnsureExposure toFDA approvedGenerationsGeometryHeadHourIndividualIndividual DifferencesMagnetic Resonance ImagingMeasurementMeasuresMediatingMedicalMental DepressionMental disordersMethodsMigraineModelingNeuronavigationNeurosciencesNeurosciences ResearchOutcomePhysiologicalPopulationPositioning AttributePrefrontal CortexProbabilityProceduresProcessPsychiatric therapeutic procedureReproducibilityResearchResearch PersonnelResolutionScalp structureSchizophreniaScientistSourceStrokeSystemTechniquesTechnologyTimeTissuesTranscranial magnetic stimulationUncertaintyVariantWorkbasechronic painclinical applicationcomputer frameworkcostdosimetryelectric fieldimaging Segmentationimprovedinterestnervous system disorderneuronal circuitryneuroregulationresearch studysimulationstatisticstool
项目摘要
Transcranial magnetic stimulation (TMS) is a noninvasive technique used for neuroscience research and
treatment of psychiatric and neurological disorders. During TMS, a current-carrying coil placed on the scalp
induces an electric field that modulates targeted neuronal circuits. Computational simulations of the electric field
(E-field) induced by TMS are increasingly used to gain a mechanistic understanding of the effect of TMS on the
brain and to inform its administration. To ensure safe and effective use of computational simulation results, it is
of primary importance to systematically quantify and enhance the level of confidence in them. As we show, much
of the error inherent to the computational methods deployed for TMS simulation can be controlled by increasing
the fidelity of the numerical approximations. However, the accuracy and precision of TMS simulations are still
largely uncertain because of inherent variability in TMS setups (e.g. inter-session variability in coil placement
and inter-individual differences) and error introduced in the generation of input simulation parameters from
experimental data (e.g. error in coil placement measurements and error introduced in an individual head image
segmentation process). Finally, there are no existing frameworks that consider this variability in selecting the
placement of the TMS coil for most efficient and reliable delivery of E-field to the target. The objective of this
project is to develop an uncertainty quantification (UQ) framework for systematically modeling input uncertainties
of TMS procedures, quantifying confidence and statistics of TMS simulations, and informing TMS dosimetry. Aim
1 concerns the creation of efficient computational frameworks for rapid and accurate simulation of TMS E-fields.
Aim 2 involves the development of UQ methods for analyzing uncertainty and variability in TMS E-field dose.
Aim 3 addresses the development of a framework for determining TMS coil placement that maximizes the E-
field delivered at the target and minimizes its variability. The proposed work will increase the fidelity and reliability
of computational TMS dosimetry and enable more accurate and precise targeting. This could empower TMS
researchers and clinicians to quantify statistically the E-field dose, infer sources of variation in experimental and
clinical outcomes, and select coil placements that result in increased and consistent efficacy.
经颅磁刺激(TMS)是一种用于神经科学研究和治疗的非侵入性技术。
治疗精神和神经系统疾病。在 TMS 过程中,将载流线圈放置在头皮上
感应调节目标神经元电路的电场。电场的计算模拟
TMS 引起的(电场)越来越多地用于获得 TMS 对
大脑并通知其管理。为保证计算模拟结果的安全、有效利用,
最重要的是系统地量化和增强对它们的信心水平。正如我们所展示的,很多
TMS 模拟所部署的计算方法固有的误差可以通过增加来控制
数值近似的保真度。然而,TMS模拟的准确度和精确度仍然有待提高。
由于 TMS 设置的固有可变性(例如线圈放置的会话间可变性),很大程度上不确定
和个体间的差异)以及在生成输入模拟参数时引入的误差
实验数据(例如线圈放置测量的误差和单个头部图像中引入的误差
分割过程)。最后,没有现有的框架在选择时考虑这种可变性。
TMS 线圈的放置可以最有效、最可靠地将电场传送到目标。此举的目的
该项目旨在开发一个不确定性量化(UQ)框架,用于系统地对输入不确定性进行建模
TMS 程序、量化 TMS 模拟的置信度和统计数据以及为 TMS 剂量测定提供信息。目的
图 1 涉及创建高效的计算框架,以快速、准确地模拟 TMS 电场。
目标 2 涉及开发 UQ 方法来分析 TMS 电场剂量的不确定性和变异性。
目标 3 致力于开发一个框架,用于确定 TMS 线圈的放置,从而最大限度地提高 E-
场传递到目标并最大限度地减少其变化。拟议的工作将提高保真度和可靠性
计算 TMS 剂量测定并实现更准确和精确的定位。这可以增强 TMS 的能力
研究人员和临床医生对电场剂量进行统计量化,推断实验和实验中的变异来源
临床结果,并选择可提高且一致疗效的线圈放置位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Javier Gomez其他文献
Luis Javier Gomez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Javier Gomez', 18)}}的其他基金
Accurate and reliable computational dosimetry and targeting for transcranial magnetic stimulation
准确可靠的计算剂量测定和经颅磁刺激靶向
- 批准号:
10221130 - 财政年份:2019
- 资助金额:
$ 7.55万 - 项目类别:
Accurate and reliable computational dosimetry and targeting for transcranial magnetic stimulation
准确可靠的计算剂量测定和经颅磁刺激靶向
- 批准号:
10455647 - 财政年份:2019
- 资助金额:
$ 7.55万 - 项目类别:
Accurate and reliable computational dosimetry and targeting for transcranial magnetic stimulation
准确可靠的计算剂量测定和经颅磁刺激靶向
- 批准号:
9751045 - 财政年份:2019
- 资助金额:
$ 7.55万 - 项目类别:
Accurate and reliable computational dosimetry and targeting for transcranial magnetic stimulation
准确可靠的计算剂量测定和经颅磁刺激靶向
- 批准号:
10260604 - 财政年份:2019
- 资助金额:
$ 7.55万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.55万 - 项目类别:
Continuing Grant