New statistical strategies for comprehensive analysis of epigenomewide methylation data

表观基因组甲基化数据综合分析的新统计策略

基本信息

  • 批准号:
    9763421
  • 负责人:
  • 金额:
    $ 19.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting about 6% of people 65 years and older worldwide. Currently, there is no effective treatment or prevention for the disease. With the rising elderly population in the US, AD has become a major public health problem and one of the most financially costly diseases. Despite recent progress in identifying genetic variants associated with AD, the biological mechanism underlying AD remains elusive. The vast majority of AD cases are sporadic (idiopathic), with disease likely resulting from a complicated interplay of genetic and environmental factors such as smoking, poor diet, and lack of exercise. Epigenetic studies investigate the mechanisms that modify the expression levels of selected genes without changes to the underlying DNA sequence. The study of these epigenetic patterns hold excellent promise for detecting new regulatory mechanisms that may be susceptible to modification by environmental factors, which in turn increase the risk of disease. Among epigenetic modifications, DNA methylation is the most widely studied. Alterations of DNA methylation levels are involved in many diseases including Alzheimer's Disease. Although a number of tools have been developed to identify Differentially Methylated Regions (DMRs) in Epigenome-Wide Association Studies, most of them only focus on the regions that contain highly significantly differentially methylated CpGs in the genome, i.e. the “tip of the iceberg”, but lack information on regions that contain CpGs with real but modest associations in the rest of the genome. We hypothesize that in the majority of complex diseases such as Alzheimer's Disease, methylation at multiple genomic regions are causally implicated in the development and progression of the disease, and some of these regions might be undetected using the conventional “most significant hits” approaches. In Aim 1, we will develop an efficient analytical pipeline for identifying biologically meaningful DMRs as well as providing comprehensive significance assessment to regions across the genome, which will streamline downstream integrative analysis. In Aim 2, we will apply the new method to brain samples in two Alzheimer disease datasets, to identify genes and pathways most likely controlled by epigenetic mechanism in AD. Successful completion of Aim 1 will provide critical tools for integrative analysis of epigenome-wide association studies (EWAS) and will help shift the current analysis paradigm of EWAS, which focuses only on regions contain the most significant differentially methylated CpGs, and largely ignores information in the rest of the genome. Successful completion of Aim 2 will provide important insights into understanding the epigenetic programs underlying Alzheimer's Disease.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lily Wang其他文献

Lily Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lily Wang', 18)}}的其他基金

Illuminating the distribution of extreme evolutionary constraint in the human genome from fetal demise to severe developmental disorders
阐明人类基因组中从胎儿死亡到严重发育障碍的极端进化限制的分布
  • 批准号:
    10601318
  • 财政年份:
    2023
  • 资助金额:
    $ 19.19万
  • 项目类别:
New computational tools for understanding and predicting AD via age-associated DNA methylation changes
通过与年龄相关的 DNA 甲基化变化来理解和预测 AD 的新计算工具
  • 批准号:
    10509428
  • 财政年份:
    2022
  • 资助金额:
    $ 19.19万
  • 项目类别:
Integrative statistical models for pathway analysis of GWAS data
GWAS 数据路径分析的综合统计模型
  • 批准号:
    9187527
  • 财政年份:
    2013
  • 资助金额:
    $ 19.19万
  • 项目类别:
Integrative statistical models for pathway analysis of GWAS data
GWAS 数据路径分析的综合统计模型
  • 批准号:
    8241543
  • 财政年份:
    2013
  • 资助金额:
    $ 19.19万
  • 项目类别:
Integrative statistical models for pathway analysis of GWAS data
GWAS 数据路径分析的综合统计模型
  • 批准号:
    8654353
  • 财政年份:
    2013
  • 资助金额:
    $ 19.19万
  • 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS Data
通过 RNA-seq 和 GWAS 数据绘制复杂疾病的遗传结构
  • 批准号:
    8658841
  • 财政年份:
    2012
  • 资助金额:
    $ 19.19万
  • 项目类别:
Mapping the Genetic Architecture of Complex Disease via RNA-seq and GWAS Data
通过 RNA-seq 和 GWAS 数据绘制复杂疾病的遗传结构
  • 批准号:
    8217762
  • 财政年份:
    2012
  • 资助金额:
    $ 19.19万
  • 项目类别:
Understanding Genetic Basis of Dental Caries via Integrative Genomic Approaches
通过综合基因组方法了解龋齿的遗传基础
  • 批准号:
    8320126
  • 财政年份:
    2011
  • 资助金额:
    $ 19.19万
  • 项目类别:
Understanding Genetic Basis of Dental Caries via Integrative Genomic Approaches
通过综合基因组方法了解龋齿的遗传基础
  • 批准号:
    8176915
  • 财政年份:
    2011
  • 资助金额:
    $ 19.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了