RAVE: A New Open Software Tool for Analysis and Visualization of Electrocorticography Data
RAVE:一种用于皮层电图数据分析和可视化的新型开放软件工具
基本信息
- 批准号:9766391
- 负责人:
- 金额:$ 23.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAmalgamBrainCodeCommunicationCommunitiesComputer softwareDataData AnalysesData SetDevelopmentDiseaseElectrocorticogramElectrodesEnsureFamilyFunctional Magnetic Resonance ImagingFundingFutureGoalsGrantHealthHourHumanHuman ActivitiesImageryImplantImplanted ElectrodesLaboratoriesLanguageLeast-Squares AnalysisLettersLiteratureMachine LearningMedicineMethodologyMorphologic artifactsNeuronsNeurosciencesNightmarePaperPatientsPhilosophyPlayPlug-inPopulationProliferatingPropertyPythonsRecording of previous eventsResearchResearch DesignResearch PersonnelRestSamplingSeedsSoftware DesignSoftware ToolsTechniquesTimeUnited States National Institutes of HealthVariantVisitapplication programming interfacebasecollegecomputer sciencedesignexperienceexperimental studygraphical user interfaceimprovedinsightinteroperabilitynovelopen sourceprogramsrelating to nervous systemstatisticstemporal measurementtoolwiki
项目摘要
Project Summary/Abstract
A fast-growing technique in human neuroscience is electrocorticography (ECOG), the only technique
that allows the activity of small population of neurons in the human brain to be directly recorded. We use the
term ECOG to refer to the entire range of invasive recording techniques (from subdural strips and grids to
penetrating electrodes) that share the common attribute of recording neural activity from the human brain
with high spatial and temporal resolution. While this ability has resulted in many high-impact advances in
understanding fundamental mechanisms of brain function in health and disease, it generates staggering
amounts of data as a single patient can be implanted with hundreds of electrodes, each sampled thousands of
times a second for hours or even days. The difficulty of exploring these vast datasets is the rate-limiting step in
using them to improve human health. We propose to overcome this obstacle by creating an easy-to-use,
powerful platform designed from the ground up for the unique properties of ECOG. We dub this software tool
RAVE (“R Analysis and Visualization of Electrocorticography data”).
The first goal of Aim 1 is to release RAVE 1.0 to the entire ECOG community by month 6 of the first
funding period. This will maximize transformative impact by putting the new tools in the hands of users as
quickly as possible, facilitating rapid adoption. The design philosophy of RAVE is driven by three imperatives.
The first is to keep users "close to the data" so that users may make discoveries about the brain without being
misled by artifacts. The second imperative is rigorous statistical methodology. The final imperative is "play well
with others". As described in Aim 2, our approach will make it easy to seamlessly incorporate new and existing
analysis tools written in Matlab, C++, Python or R into RAVE, giving users the best of both worlds: advanced
but easy-to-use visualization of results from ECOG experiments, whether they are analyzed with the off-the-
shelf tools routines provided with RAVE or novel tools developed by others.
项目总结/摘要
在人类神经科学中,一种快速发展的技术是皮层脑电图(ECOG),
它可以直接记录人脑中一小部分神经元的活动。公司现采用国际
术语ECOG是指整个侵入性记录技术范围(从硬膜下条和网格到
穿透电极),其共享记录来自人脑的神经活动的共同属性
具有高的空间和时间分辨率。虽然这种能力导致了许多高影响力的进步,
了解健康和疾病中大脑功能的基本机制,
单个患者可以植入数百个电极,每个电极采样数千个
几个小时甚至几天。探索这些庞大的数据集的困难在于
利用它们来改善人类健康。我们建议通过创建一个易于使用,
为ECOG的独特性能而全新设计的强大平台。我们将这个软件工具命名为
RAVE(“皮层电图数据的R分析和可视化”)。
Aim 1的第一个目标是在第一个月的第6个月向整个ECOG社区发布RAVE 1.0
融资期。这将通过将新工具交到用户手中,
尽可能快,以促进快速采用。RAVE的设计理念由三个要素驱动。
第一个是让用户“接近数据”,这样用户就可以在不被干扰的情况下发现大脑。
被艺术品误导了第二个必要条件是严格的统计方法。最后的当务之急是“打好比赛
与他人”。如目标2所述,我们的方法将使新的和现有的无缝整合变得容易。
使用Matlab、C++、Python或R编写的分析工具集成到RAVE中,为用户提供两全其美的功能:高级
但易于使用的可视化结果从ECOG实验,无论他们是分析与关闭的,
RAVE提供的工具例程或其他人开发的新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael S Beauchamp其他文献
Michael S Beauchamp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael S Beauchamp', 18)}}的其他基金
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
10405731 - 财政年份:2019
- 资助金额:
$ 23.66万 - 项目类别:
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
10676997 - 财政年份:2019
- 资助金额:
$ 23.66万 - 项目类别:
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
10459624 - 财政年份:2019
- 资助金额:
$ 23.66万 - 项目类别:
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
10016852 - 财政年份:2019
- 资助金额:
$ 23.66万 - 项目类别:
NEURAL SUBSTRATES OF OPTIMAL MULTISENSORY INTEGRATION
最佳多感官整合的神经基质
- 批准号:
9197698 - 财政年份:2016
- 资助金额:
$ 23.66万 - 项目类别:
NEURAL SUBSTRATES OF OPTIMAL MULTISENSORY INTEGRATION
最佳多感官整合的神经基质
- 批准号:
9055439 - 财政年份:2016
- 资助金额:
$ 23.66万 - 项目类别:
Neural Mechanisms of Optimal Multisensory Integration
最佳多感觉整合的神经机制
- 批准号:
8018453 - 财政年份:2010
- 资助金额:
$ 23.66万 - 项目类别:
Neural substrates of optimal multisensory integration
最佳多感觉整合的神经基质
- 批准号:
10735194 - 财政年份:2010
- 资助金额:
$ 23.66万 - 项目类别:
Neural Mechanisms of Optimal Multisensory Integration
最佳多感觉整合的神经机制
- 批准号:
7895476 - 财政年份:2010
- 资助金额:
$ 23.66万 - 项目类别:
Neural Mechanisms of Optimal Multisensory Integration
最佳多感觉整合的神经机制
- 批准号:
8416984 - 财政年份:2010
- 资助金额:
$ 23.66万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.66万 - 项目类别:
Continuing Grant