Alzheimer's Disease-Related Dementia Models by Precision Editing and Relevant Genetic x Environmental Exposures
通过精确编辑和相关基因 x 环境暴露建立与阿尔茨海默病相关的痴呆模型
基本信息
- 批准号:9894500
- 负责人:
- 金额:$ 244.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic AnalysisAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease related dementiaAmyloidAnimal ModelAtlasesBasic ScienceBehavioralBiologicalBlood VesselsBrainCRISPR/Cas technologyCellsCerebral Amyloid AngiopathyClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCognitiveCognitive deficitsCommunitiesComorbidityComplexComputer softwareCoupledDataDatabasesDementiaDiagnosisDietDiseaseDisease ProgressionElderlyEnsureEnvironmentEnvironmental ExposureEnvironmental Risk FactorExhibitsFertilityFrontotemporal DementiaFunding MechanismsGene Expression ProfileGenesGeneticGenetic VariationHealthHeterogeneityHumanImageImpaired cognitionIndividualInformaticsKnock-inKnock-in MouseLate Onset Alzheimer DiseaseLewy Body DementiaLongevityMagnetic Resonance ImagingMeasurementMemory LossModelingMolecularMusMutationNeurodegenerative DisordersNeurologicOutcomePathogenesisPathologicPathologyPathway AnalysisPathway interactionsPatientsPatternPeripheralPhasePhenotypePhysiologicalPopulationPositioning AttributePreclinical TestingPredispositionProcessRNAReproducibilityResourcesRestRiskRoleRouteSelection CriteriaSenile PlaquesSeverity of illnessStagingStructureSymptomsSynapsesTimeTissuesTranslatingTranslationsUnited States National Institutes of HealthVariantVascular DementiaViralalpha synucleinamyloid pathologybasebehavior testcognitive testingcohortcombinatorialdata resourcedisease-causing mutationdisorder riskdrug discoveryfamilial Alzheimer diseasefeature detectionfunctional genomicsgene conservationgenome editinggenomic datahippocampal sclerosishuman datahuman diseasehuman modelimage processingimprovedinsightmimeticsmixed dementiamodel developmentmolecular phenotypemouse modelnetwork modelsneurobehavioralneuroimagingneuropathologyneurotoxicnew therapeutic targetnext generationnovelphenomephenotypic datapreclinical studyprogramsprotein TDP-43repositoryresilienceresponserisk variantscreeningsexsynucleinopathytau Proteinstherapeutic developmenttranscriptome sequencingwestern diet
项目摘要
PROJECT SUMMARY
Alzheimer’s disease is the most common cause of dementia in the elderly, but there are a number of other
related dementias that exhibit substantial overlap in the behavioral, cognitive, and neuropathological
manifestations of the disease. In fact, the majority of dementia cases likely arise from the co-occurrence of one
or more of these AD and AD-related pathologies, with very few individuals exhibiting ‘pure’ Alzheimer’s
pathology (e.g., only amyloid plaques). This complexity makes diagnosis and therapeutic development
challenging, a problem exacerbated by a paucity of accurate animal models for ADRD that faithfully
recapitulate the full spectrum of the molecular, cellular, cognitive, and behavioral pathologies of these
dementias. In response to PAR-19-167, we will create a panel of genetically diverse knock-in mice harboring
known mutations associated with AD and several related dementias using precise genomic editing to ensure
biologically-relevant gene expression patterns and levels. In Aim 1, we will use CRISPR/Cas9 to create mice
carrying combinations of disease-causing mutations in App, Psen1, Mapt, Tardbp, and Snca to produce a set
of ‘core’ strains we expect to better capture the complexity of ADRD. To capture the role of genetic background
in disease risk, we will then cross these ‘core’ mice to four genetic backgrounds known to promote
susceptibility or resilience of ADRD (DBA/2J, FVB/NJ, WSB/EiJ, and C57Bl/6J). We will then leverage our
expertise in high-throughput mouse neurobehavioral phenotyping to screen 16 new ADRD strains to identify
the lines that best model ADRD. In Aim 2, we will use our deep phenotyping pipeline to fully characterize our
top strains across the entire spectrum of ADRD-related symptoms, including both cognitive and non-cognitive
domains. We will also use high-field MRI, histopathological measurements, and molecular phenotypes to
assess effects on brain structure, extent of neuropathologies, and impact on gene networks and pathways
associated with disease. Finally, in Aim 3, we will validate our new models for use in basic science and
preclinical studies by determining concordance between mouse and human data and use network modeling
approaches to identify early drivers of disease that predict late-stage outcomes in humans. This project will
produce much-needed new models for AD and related dementias that will greatly enhance our understanding
of the pathological mechanisms underlying these diseases. Finally, all of the models produced here will be
distributed to the community via the JAX Repository. We will also make all of the phenotyping data publicly
available using resources such as Mouse Phenome Database, GeneWeaver, and Synapse.
项目摘要
阿尔茨海默病是老年痴呆症最常见的原因,但也有一些其他的原因。
在行为、认知和神经病理方面表现出大量重叠的相关痴呆
疾病的表现。事实上,大多数痴呆症病例可能是由一种痴呆症同时发生引起的
这些AD和AD相关的病理中的一种或多种,很少有人表现出“纯粹的”阿尔茨海默氏症
病理学(例如,仅淀粉样斑块)。这种复杂性使得诊断和治疗的发展
具有挑战性的是,由于缺乏准确的ADRD动物模型,
概括了这些疾病的分子、细胞、认知和行为病理学的全谱,
痴呆症为了响应PAR-19-167,我们将创建一组遗传多样性敲入小鼠,
使用精确的基因组编辑来确保与AD和几种相关痴呆症相关的已知突变
生物相关基因表达模式和水平。在目标1中,我们将使用CRISPR/Cas9来创建小鼠
携带App、Psen 1、Mapt、Tardbp和Snca中致病突变的组合,以产生一组
我们希望通过“核心”菌株的筛选能够更好地捕捉ADRD的复杂性。为了抓住遗传背景的作用
在疾病风险中,我们将这些“核心”小鼠与四种已知的基因背景杂交,
ADRD的易感性或恢复性(DBA/2 J、FVB/NJ、WSB/EiJ和C57 B1/6 J)。然后我们将利用我们的
在高通量小鼠神经行为表型方面的专业知识,以筛选16种新的ADRD菌株,
最能模拟ADRD的线路。在目标2中,我们将使用我们的深度表型分析管道来充分表征我们的
在整个ADRD相关症状谱中,包括认知和非认知症状,
域.我们还将使用高场MRI、组织病理学测量和分子表型,
评估对大脑结构的影响,神经病理学的程度,以及对基因网络和途径的影响
与疾病有关。最后,在目标3中,我们将验证我们的新模型用于基础科学,
通过确定小鼠和人类数据之间的一致性并使用网络建模进行临床前研究
确定疾病早期驱动因素的方法,这些方法可预测人类的晚期结果。该项目将
为AD和相关痴呆症生产急需的新模型,这将大大提高我们的理解
这些疾病背后的病理机制最后,这里生产的所有模型都将
通过JAX Repository分发给社区。我们还将公开所有的表型数据
可使用诸如小鼠表型数据库、GeneWeaver和Synapse的资源获得。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CATHERINE COOK KACZOROWSKI其他文献
CATHERINE COOK KACZOROWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CATHERINE COOK KACZOROWSKI', 18)}}的其他基金
3D Brain Tissue System for Modeling Resilience to Alzheimer's Disease and Drug Discovery
3D 脑组织系统用于模拟阿尔茨海默病和药物发现的恢复能力
- 批准号:
10848925 - 财政年份:2022
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetics Analysis of Alzheimer's Disease-Related Sleep Loss and the Transition to Dementia
阿尔茨海默氏病相关睡眠不足和向痴呆症转变的系统遗传学分析
- 批准号:
10554420 - 财政年份:2022
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetics Analysis of Alzheimer's Disease-Related Sleep Loss and the Transition to Dementia
阿尔茨海默氏病相关睡眠不足和向痴呆症转变的系统遗传学分析
- 批准号:
10388971 - 财政年份:2022
- 资助金额:
$ 244.96万 - 项目类别:
3D Brain Tissue System for Modeling Resilience to Alzheimer's Disease and Drug Discovery
3D 脑组织系统用于模拟阿尔茨海默病和药物发现的恢复能力
- 批准号:
10353296 - 财政年份:2022
- 资助金额:
$ 244.96万 - 项目类别:
Cell Type-Specific Proteins that Promote Resilience to Cognitive Aging and Alzheimer's Disease
促进认知衰老和阿尔茨海默病恢复能力的细胞类型特异性蛋白质
- 批准号:
10374361 - 财政年份:2021
- 资助金额:
$ 244.96万 - 项目类别:
Cell Type-Specific Proteins that Promote Resilience to Cognitive Aging and Alzheimer's Disease
促进认知衰老和阿尔茨海默病恢复能力的细胞类型特异性蛋白质
- 批准号:
10846926 - 财政年份:2021
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetic Analysis of Cognitive Resilience Using Multi-Parent Crosses
使用多亲本杂交进行认知弹性的系统遗传分析
- 批准号:
9796667 - 财政年份:2019
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetic Analysis of Cognitive Resilience Using Multi-Parent Crosses
使用多亲本杂交进行认知弹性的系统遗传分析
- 批准号:
10330619 - 财政年份:2019
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetic Analysis of Cognitive Resilience Using Multi-Parent Crosses
使用多亲本杂交进行认知弹性的系统遗传分析
- 批准号:
10840565 - 财政年份:2019
- 资助金额:
$ 244.96万 - 项目类别:
Systems Genetics Analysis of Resilience to Alzheimer’s disease
对阿尔茨海默病的抵抗力的系统遗传学分析
- 批准号:
10172815 - 财政年份:2017
- 资助金额:
$ 244.96万 - 项目类别: