Electrostatic modulation of protein dynamics and interactions (Supplement for Equipment Purchase)
蛋白质动力学和相互作用的静电调节(设备购买补充)
基本信息
- 批准号:9894611
- 负责人:
- 金额:$ 10.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlzheimer&aposs DiseaseAspartic EndopeptidasesBenchmarkingBindingCodeCommunitiesCoupledDataDependenceDevelopmentDrug DesignDrug TargetingElectrostaticsElevatorEquilibriumFree EnergyGoalsHealthHistidineHybridsHypertensionIceIntegral Membrane ProteinIon ChannelIonsKineticsKnowledgeLettersMalignant NeoplasmsMediatingMembraneMembrane PotentialsModelingMolecularMolecular ConformationPathway interactionsPeptide HydrolasesPhosphotransferasesPopulationProcessProtein DynamicsProteinsProtocols documentationProton-Motive ForceProtonsSodiumSodium-Hydrogen AntiporterSolventsSpeedStructureStructure-Activity RelationshipTechniquesTestingTransport ProcessValidationWalkersantiporterbasebeta-site APP cleaving enzyme 1computer studiesdrug discoveryefflux pumpequipment acquisitionexperienceinnovationinsightmolecular dynamicsneglectnovelpH gradientprotonationsecretasesimulationsmall moleculesmall molecule inhibitorsrc-Family Kinasesstoichiometrytemporal measurementtool
项目摘要
Project Summary/Abstract
This renewal proposal seeks to continue the development and application of continuous constant pH molecular
dynamics (CpHMD) tools to advance molecular understanding of proteases, kinases and sodium/proton an-
tiporters which are involved in Alzheimer's disease, cancer and hypertension, respectively. The objectives of this
proposal are to 1) further develop, accelerate and disseminate CpHMD; 2) discover electrostatic modulators of
aspartyl proteases and kinases towards selective inhibition; and 3) elucidate the mechanisms of sodium/proton
antiporters.
Development of a pH stat to properly control solution pH has been a long-standing goal in the MD community.
Our recent development of PME-based all-atom CpHMD brought us closer to the goal. In Aim 1, we will add
a polarizable force field to take the accuracy of CpHMD to the next level. We will implement CpHMD in other
packages to enable alternative implicit-solvent models and force fields. We will implement the code on the GPU
platform to allow routine microsecond-scale simulations. The new developments will push the boundary of current
MD simulations, transforming pKa calculations and studies of proton-mediated processes.
Protonation states and pH effects are a neglected aspect in structure-based drug design due to the lack of tools
and understanding. We recently discovered a pH-regulated dynamics-activity relationship for -secretase (a
major Alzheimer's drug target) and demonstrated significant pH dependence in small-molecule binding. In Aim
2, we will continue the study of -secretase related aspartyl proteases, and we will tackle challenging questions
regarding kinase activation and selective inhibition.
Conventional fixed-protonation-state MD with static-structure-based electrostatic calculations cannot reliably iden-
tify proton-binding residues and elucidate proton-coupled conformational dynamics. We recently developed the
membrane hybrid-solvent CpHMD, which allowed the first constant pH simulations of a proton channel (M2), a
sodium/proton antiporter (NhaA) and an efflux pump (AcrB). In Aim 3, we plan to apply this and the new tools
developed in Aim 1 to gain further insights into the sodium-proton exchange process in NhaA and to elucidate
the distinctive mechanism of another sodium-proton antiporter. These studies will further validate CpHMD and
establish it as a powerful tool for studies of proton-coupled transmembrane proteins.
In summary, the proposed project will push the boundary of the current predictive power of molecular simulations,
transform studies of proton-mediated processes, and generate new insights to accelerate drug discovery targeting
Alzheimer's disease, cancer and hypertension.
项目总结/摘要
本更新建议旨在继续开发和应用连续恒pH分子
动力学(CpHMD)工具,以推进蛋白酶,激酶和钠/质子和
这些转运蛋白分别与阿尔茨海默病、癌症和高血压有关。这一目标
建议是:1)进一步开发、加速和推广CpHMD; 2)发现
乙酰化蛋白酶和激酶的选择性抑制; 3)阐明钠/质子的机制
反向转运体
开发一种pH统计器来适当地控制溶液pH一直是MD社区的长期目标。
我们最近开发的基于质子交换膜的全原子CpHMD使我们更接近这一目标。在目标1中,我们将添加
一个可极化的力场,将CpHMD的准确性提升到一个新的水平。我们将在其他领域实施CpHMD
软件包,使替代隐式溶剂模型和力场。我们将在GPU上实现代码
该平台允许常规微秒级模拟。新的发展将推动当前的边界
分子动力学模拟,转化pKa计算和质子介导过程的研究。
在基于结构的药物设计中,由于缺乏工具,质子化状态和pH效应是一个被忽视的方面
和理解我们最近发现了一种pH调节的β-分泌酶(a
主要的阿尔茨海默病药物靶点),并在小分子结合中表现出显著的pH依赖性。在Aim中
2、我们将继续研究与β-分泌酶相关的酰基蛋白酶,并将解决具有挑战性的问题。
关于激酶激活和选择性抑制。
传统的固定质子化状态MD与基于静态结构的静电计算不能可靠地确定-
验证质子结合残基并阐明质子耦合构象动力学。我们最近开发了
膜混合溶剂CpHMD,允许质子通道(M2)的第一个恒定pH模拟,
钠/质子反向转运体(NhaA)和射束泵(AcrB)。在目标3中,我们计划应用这一点和新工具
在目标1中开发,以进一步了解NhaA中的钠质子交换过程,并阐明
另一种钠质子反向转运蛋白的独特机制这些研究将进一步验证CpHMD,
建立它作为一个强有力的工具,质子耦合跨膜蛋白的研究。
总之,拟议的项目将突破分子模拟当前预测能力的界限,
改变质子介导过程的研究,并产生新的见解,以加速药物发现靶向
老年痴呆症癌症和高血压。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jana Shen其他文献
Jana Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jana Shen', 18)}}的其他基金
Molecular mechanisms of proton-coupled dynamic processes in biology
生物学中质子耦合动态过程的分子机制
- 批准号:
10552201 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别:
A Multi-pronged Computational Approach to Advance Kinase Drug Discovery
促进激酶药物发现的多管齐下的计算方法
- 批准号:
10598543 - 财政年份:2021
- 资助金额:
$ 10.53万 - 项目类别:
A Multi-pronged Computational Approach to Advance Kinase Drug Discovery
促进激酶药物发现的多管齐下的计算方法
- 批准号:
10348133 - 财政年份:2021
- 资助金额:
$ 10.53万 - 项目类别:
A Multi-pronged Computational Approach to Advance Kinase Drug Discovery
促进激酶药物发现的多管齐下的计算方法
- 批准号:
10097404 - 财政年份:2021
- 资助金额:
$ 10.53万 - 项目类别:
Electrostatic modulation of protein stability and folding
蛋白质稳定性和折叠的静电调节
- 批准号:
8549265 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Electrostatic modulation of protein stability and folding
蛋白质稳定性和折叠的静电调节
- 批准号:
8706903 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Electrostatic modulation of protein stability and folding
蛋白质稳定性和折叠的静电调节
- 批准号:
8896319 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Electrostatic modulation of protein stability and folding
蛋白质稳定性和折叠的静电调节
- 批准号:
8323297 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Electrostatic modulation of protein stability and folding
蛋白质稳定性和折叠的静电调节
- 批准号:
8162707 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别: