Rapid modulation of hippocampal GABAergic Inhibition by O-GlcNAcylation
O-GlcNAc 酰化快速调节海马 GABA 能抑制
基本信息
- 批准号:9765783
- 负责人:
- 金额:$ 40.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlzheimer&aposs DiseaseAreaBenefits and RisksBrainBrain DiseasesChronicCognitionCognitiveDataDiseaseDown SyndromeDrug IndustryEffectivenessEndocytosisEnzymesEquilibriumExcisionExcitatory SynapseFrequenciesFutureGeneticGlobal ChangeGlucoseGlutamatesHealthHexosaminesHippocampus (Brain)Impaired cognitionIn VitroInterneuronsKnockout MiceLearningLinkLiteratureMediatingMemoryMental DepressionMetabolicModelingModificationMusNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsO-GlcNAc transferasePathologicPathologyPathway interactionsPharmacologyPhosphorylationPhysiologicalPhysiologyPost-Translational Protein ProcessingProteinsPyramidal CellsRattusRegulationResearchRoleSeizuresSerineSliceSynapsesSynaptic MembranesTestingTherapeuticTherapeutic InterventionThreonineTransgenic MiceTransgenic Organismsautism spectrum disorderbehavioral studyexperimental studyimprovedin vivoinfancyinhibitor/antagonistinterestneural circuitnovelpeptide O-linked N-acetylglucosamine-beta-N-acetylglucosaminidasepostsynapticreceptorreceptor internalizationsynaptic functionsynaptic inhibitiontau Proteinstau aggregationtau phosphorylationtherapeutic targettraffickingtransmission process
项目摘要
Hippocampal synaptic function and learning and memory are vulnerable to alterations in protein O-
GlcNAcylation, the O-linked attachment of β-N-acetylglucosamine (GlcNAc) to serine/threonine (ser/thr)
residues. O-GlcNAcylation is now recognized as a possible therapeutic target for cognitive dysfunction,
particularly in the treatment of Alzheimer's disease (AD), where decreased O-GlcNAc may be permissive for
pathological tau hyperphosphorylation. Systemic administration of the OGA inhibitor, thiamet-G, reversed the
increase in tau phosphorylation and improved spatial learning and memory in transgenic AD mice. Obviously,
determining how O-GlcNAcylation modulates neuronal and synaptic function under physiological and
pathophysiological conditions is imperative to understanding its impact on learning and memory, and the risks
and benefits of therapeutic intervention.
Our lab has made significant contributions to this new area of research by showing that acute and selective
increase in O-GlcNAcylation of AMPAR GluA2 subunits underlies expression of a novel form of LTD at CA3-
CA1 synapses (O-GlcNAc LTD), as well as the dampening pathological hyperexcitability in seizure models. We
also find that acute increases in O-GlcNAc interferes with some forms of hippocampus-dependent learning and
memory. Because excitation/inhibition balance in memory circuits governs normal learning and memory, and
GABAAR function and trafficking is modified by serine phosphorylation, we have used our expertise to
investigate how rapid changes in O-GlcNAcylation occurring under physiological conditions modulates the
efficacy of GABAergic inhibition. Importantly, because not all GABAergic interneurons express GluA2 subunits,
O-GlcNAc LTD will only occur at glutamatergic synapses on a subset of interneurons, which will alter circuit
dynamics when O-GlcNAcylation is high. In preliminary experiments, we found that acutely increasing protein
O-GlcNAcylation decreases the amplitude and frequency of sIPSCs and the amplitude of mIPSCs recorded
from CA1 pyramidal cells in rat hippocampal slices. In this exploratory proposal, we test the hypothesis that O-
GlcNAcylation directly modulates the strength of synaptic inhibition via postsynaptic GABAARs and receptor
internalization, and indirectly via expression of O-GlcNAc LTD at excitatory synapses onto specific
interneurons possessing GluA2-containing AMPARs. The results of these exploratory studies will establish an
entirely novel fundamental mechanism that directly and indirectly controls GABAergic inhibition, thereby
providing a framework for future studies targeting O-GlcNAc in neurodegenerative diseases, such as
Alzheimer's disease, and in neurodevelopmental disorders such as autism and Down syndrome, where
imbalances in excitatory and inhibitory circuits underlie cognitive dysfunction. The results of these studies will
make a huge advance in a field that is in its infancy.
海马突触功能,学习和记忆容易受到蛋白质O-的改变
Glcnacylation,β-N-乙酰葡萄糖(GlcNAC)与丝氨酸/苏氨酸(Ser/Thr)的O连接附着
残留物。现在,O-Glcnacylation被认为是认知功能障碍的可能的治疗靶点,
特别是在治疗阿尔茨海默氏病(AD)中,改善O-GLCNAC可能是允许的
病理tau高磷酸化。 OGA抑制剂的系统性给药,thiamet-g逆转了
转基因AD小鼠中TAU磷酸化的增加,并改善了空间学习和记忆。明显地,
确定O-Glcnacylation如何在生理和
病理生理状况必须了解其对学习和记忆的影响以及风险
和治疗干预的好处。
我们的实验室通过表明急性和选择性为这一新的研究领域做出了重大贡献
AMPAR GLUA2亚基的O-Glcnacylation的增加是CA3-的新型LTD表达
CA1突触(O-GLCNAC LTD),以及癫痫发作模型中的衰减病理过度兴奋性。我们
还发现O-GLCNAC干扰某些形式的海马依赖性学习和
记忆。因为记忆电路中的兴奋/抑制平衡控制正常的学习和记忆,并且
Gabaar功能和贩运是通过丝氨酸磷酸化来修改的,我们已经使用我们的专业知识来
研究在生理条件下O-Glcnacylation的快速变化如何调节
GABA能抑制的有效性。重要的是,因为并非所有GABA能中间神经元表达GLUA2亚基,所以
O-GLCNAC LTD仅在中间神经元的子集的谷氨酸能突触上发生,该突触将改变电路
当O-Glcnacylation高时动力学。在初步实验中,我们发现蛋白质急性增加
O-GlcNacylation降低了SIPSC的放大器和频率,并记录了MIPSC的放大器
来自大鼠海马切片中的CA1锥体细胞。在这项探索性建议中,我们检验了O-的假设
Glcnacylation直接通过突触后Gabaar和接收器调节突触抑制的强度
内在化,并通过在兴奋性突触上的O-GLCNAC LTD的表达间接地表达在特定上
具有含GLUA2的AMPAR的中间神经元。这些探索性研究的结果将建立
完全新颖的基本机制直接和间接控制GABA能抑制,从而
为针对神经退行性疾病的O-GLCNAC的未来研究提供了一个框架,例如
阿尔茨海默氏病,以及在自闭症和唐氏综合症等神经发育障碍中
兴奋和抑制回路的失衡是认知功能障碍的基础。这些研究的结果将
在起步阶段的领域中取得了巨大进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN C CHATHAM其他文献
JOHN C CHATHAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN C CHATHAM', 18)}}的其他基金
The role of protein O-linked N-Acetylglucosamine in regulating cardiac physiology
蛋白O-连接的N-乙酰氨基葡萄糖在调节心脏生理学中的作用
- 批准号:
10213829 - 财政年份:2020
- 资助金额:
$ 40.84万 - 项目类别:
STIM1 and its role in regulating cardiac metabolism
STIM1及其在心脏代谢中的调节作用
- 批准号:
10371868 - 财政年份:2020
- 资助金额:
$ 40.84万 - 项目类别:
STIM1 and its role in regulating cardiac metabolism
STIM1及其在心脏代谢中的调节作用
- 批准号:
10592268 - 财政年份:2020
- 资助金额:
$ 40.84万 - 项目类别:
Administrative Supplement to Award "Circadian regulation of vascular aging"
“血管老化的昼夜节律调节”奖行政补充
- 批准号:
10283788 - 财政年份:2019
- 资助金额:
$ 40.84万 - 项目类别:
Aberrant Circadian Regulation of Autophagy in the Heart During Diabetes
糖尿病期间心脏自噬的异常昼夜节律调节
- 批准号:
10288158 - 财政年份:2018
- 资助金额:
$ 40.84万 - 项目类别:
Aberrant Circadian Regulation of Autophagy in the Heart During Diabetes
糖尿病期间心脏自噬的异常昼夜节律调节
- 批准号:
9543678 - 财政年份:2018
- 资助金额:
$ 40.84万 - 项目类别:
Aberrant Circadian Regulation of Autophagy in the Heart During Diabetes
糖尿病期间心脏自噬的异常昼夜节律调节
- 批准号:
10078980 - 财政年份:2018
- 资助金额:
$ 40.84万 - 项目类别:
Disruption of the Clock O-GlcNAc axis in diabetic cardiomyopathy
糖尿病心肌病中时钟 O-GlcNAc 轴的破坏
- 批准号:
8814019 - 财政年份:2014
- 资助金额:
$ 40.84万 - 项目类别:
相似海外基金
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 40.84万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 40.84万 - 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
$ 40.84万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 40.84万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 40.84万 - 项目类别: