Bidirectional Hybrid Electrical-Acoustic Minimally Invasive Implants for Large-Scale Neural Recording and Modulation
用于大规模神经记录和调制的双向混合电声微创植入物
基本信息
- 批准号:9766303
- 负责人:
- 金额:$ 19.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAnimalsBiologicalBrainBrain regionChemicalsCicatrixCognitiveComplexDataDevelopmentDevicesDiseaseElectrocorticogramElectrodesElectromagneticsElectrophysiology (science)EmotionsEsthesiaFailureFiber OpticsFilmFocused UltrasoundFrequenciesFutureGeometryGoalsHumanHybridsImageImplantInjuryKnowledgeLightLinkLiquid substanceMeasuresMethodsModalityMonitorMotorNeuronsOpticsPatternPenetrationPerformancePharmacologyResolutionSafetySensorySignal TransductionSiteSpecificityStructureSurfaceSystemTechnologyTelemetryTestingThickThinnessTimeTissue imagingTissuesTransducersUltrasonic TransducerUltrasonicsUltrasonographyValidationWireless Technologybiomaterial compatibilitybrain parenchymadata exchangedensitydesignfailure Implantationflexibilityhemodynamicsimage guidedimaging capabilitiesimplantationmillimetermillisecondminimally invasivenervous system disorderneural stimulationneuroregulationneurotechnologyoperationparylene Cpreventrelating to nervous systemresearch and developmentresponsespatiotemporaltechnology developmenttool
项目摘要
Project Summary:
Dynamic mapping of complex brain circuits by monitoring and modulating brain activity at large scale will
enhance our understanding of brain functions, such as sensation, thought, emotion, and action. This
knowledge will ultimately help to better treat and prevent neurological disorders. Real-time interfacing with the
brain also has the potential to enhance our perceptual, motor, and cognitive capabilities, as well as to restore
sensory and motor functions lost through injuries or diseases. Despite decades of research and development
of neurotechnologies for the brain, unfortunately monitoring and modulation of brain activity with high
spatiotemporal resolution at large scale is still one of the grand challenges in the 21st century.
Currently, neuromodulation can be achieved with different modalities from pharmacological and chemical
methods, which lack specificity, to electrical, electromagnetic, optical, and acoustic methods with higher
specificity. Similarly, neural activity can be monitored with different indirect (through imaging hemodynamic
changes) or direct (electrophysiology recording) methods with various spatiotemporal resolution and spatial
coverage. Unfortunately, available non-invasive tools for brain interfacing suffer from poor spatiotemporal
resolution. Implantable methods are extremely invasive, requiring penetration of devices (e.g. electrodes, optic
fibers) into the brain parenchyma with scar tissue formation, long-term damage, and biological responses that
can result in implantation failure over time. More importantly, current implantable methods can only be applied
to hundreds of neurons out of ~85 billion neurons in the human brain.
We propose a new paradigm for large-scale neural interfacing by developing a new bidirectional neural-
interface platform in that a network of minimally invasive, hybrid electrical-acoustic implants are distributed
over the brain surface. These implants will 1) be small (millimeter scale), light, free-floating, addressable, and
wireless, 2) simultaneously provide high-density electrophysiology recording (µECOG) and ultrasonic
stimulation with high spatiotemporal resolution of several micrometers and milliseconds, 3) stimulate different
distributed regions of the brain parenchyma through focusing an ultrasonic beam by an array of thin-film
ultrasonic transducers (without penetration into the brain parenchyma), and 4) acoustically guide both µECOG
recording and ultrasonic stimulation by imaging neural structure under the implant.
项目概要:
通过大规模监测和调节大脑活动来动态绘制复杂的大脑回路,
增强我们对大脑功能的理解,如感觉,思想,情感和行动。这
知识最终将有助于更好地治疗和预防神经系统疾病。实时连接
大脑还具有增强我们的感知、运动和认知能力的潜力,
由于受伤或疾病而丧失的感觉和运动功能。尽管经过几十年的研究和开发
不幸的是,对大脑活动的监测和调节,
大尺度的时空分辨率仍然是21世纪的重大挑战之一。
目前,神经调节可以通过药物和化学的不同方式来实现。
方法,缺乏特异性,以电气,电磁,光学和声学方法具有更高的
的特异性类似地,可以用不同的间接(通过成像血流动力学)监测神经活动。
改变)或直接(电生理记录)方法,具有各种时空分辨率和空间分辨率。
覆盖不幸的是,现有的用于大脑接口的非侵入性工具存在时空差的问题
分辨率植入式方法具有极高的侵入性,需要穿透器械(例如电极、光学元件)
纤维)进入脑实质,形成瘢痕组织、长期损伤和生物反应,
随着时间的推移会导致植入失败。更重要的是,目前的植入方法只能应用于
人类大脑中850亿个神经元中的数百个神经元。
我们提出了一个新的范例,为大规模的神经接口,通过开发一个新的双向神经-
接口平台,其中分布有微创混合电声植入物网络
在大脑表面。这些植入物将1)小(毫米级),轻,自由浮动,可寻址,
无线,2)同时提供高密度电生理记录(µECOG)和超声
具有几微米和毫秒高时空分辨率的刺激,3)刺激不同的
通过由薄膜阵列聚焦超声波束,
超声换能器(不穿透脑实质),以及4)声学引导µECOG
通过对植入物下的神经结构进行成像来记录和超声刺激。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
32 Element Piezoelectric Micromachined Ultrasound Transducer (PMUT) Phased Array for Neuromodulation.
- DOI:10.1109/ojuffc.2022.3196823
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tipsawat, Pannawit;Ilham, Sheikh Jawad;Yang, Jung In;Kashani, Zeinab;Kiani, Mehdi;Trolier-McKinstry, Susan
- 通讯作者:Trolier-McKinstry, Susan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Kiani其他文献
Mehdi Kiani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study of the biological significance of oligosaccharide nucleotides separated from domestic farm animals' milk and attempt to utilize it in animal feed
家畜乳中分离寡糖核苷酸的生物学意义及其在动物饲料中的应用尝试
- 批准号:
19K06364 - 财政年份:2019
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
6 MeV/amu ion linac for deep-penetration microbeam and millimeter-beam charged-particle irradiations in small animals and biological tissues
6 MeV/amu 离子直线加速器,用于小动物和生物组织的深穿透微束和毫米束带电粒子照射
- 批准号:
9493886 - 财政年份:2018
- 资助金额:
$ 19.72万 - 项目类别:
Biological effects of long-term radiation exposure on wild animals and plants
长期辐射照射对野生动植物的生物学影响
- 批准号:
18H02229 - 财政年份:2018
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cellular biological investigation of cochlear function after acoustic trauma in animals models.
动物模型声损伤后耳蜗功能的细胞生物学研究。
- 批准号:
24791814 - 财政年份:2012
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Biological monitoring using animals
使用动物进行生物监测
- 批准号:
23580430 - 财政年份:2011
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Recognition process of animal species in modern Japan and its contributions of research of natural monument animals and biological diversities
近代日本动物物种的认识过程及其对天然纪念动物和生物多样性研究的贡献
- 批准号:
23501210 - 财政年份:2011
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research Starter Grant for Biological Informatics: Linking theory with data to understand the population dynamics of migratory animals
生物信息学研究启动资助:将理论与数据联系起来,了解迁徙动物的种群动态
- 批准号:
0933602 - 财政年份:2009
- 资助金额:
$ 19.72万 - 项目类别:
Standard Grant
Studies on the biological effects and mode of action of pollutants in marine animals
污染物对海洋动物的生物学效应及作用方式研究
- 批准号:
20510060 - 财政年份:2008
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on functions of micro-animals in the detritus food webs of biological wastewater treatment systems.
废水生物处理系统碎屑食物网中微型动物的功能分析
- 批准号:
16510071 - 财政年份:2004
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetic effects and biological concentration of radionuclides in plants and animals after Chernobyl catastrophe.
切尔诺贝利灾难后动植物体内放射性核素的遗传效应和生物浓度。
- 批准号:
16406019 - 财政年份:2004
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




