A peptide model to study the Fibril Assembly of collagen triple helix
研究胶原三螺旋原纤维组装的肽模型
基本信息
- 批准号:9767827
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAtherosclerosisBindingBiocompatible MaterialsBiological ModelsBiological ProcessBiomedical EngineeringBiomedical ResearchBlood VesselsBone DevelopmentBone DiseasesChargeCollagenCollagen FibrilCollagen Type IConnective TissueConnective Tissue DiseasesDevelopmentDiseaseEngineeringEtiologyEventFibrillar CollagenFundingGoalsGrantGrowthHealthHumanHydrophobicityHydroxyprolineImpairmentKnowledgeLaboratoriesLeadLinkMalignant NeoplasmsMicroscopicModelingMolecularMutagenesisMutationOrganOrganismOsteogenesis ImperfectaOutcome StudyPeptide SynthesisPeptidesPeriodicityPost-Translational Protein ProcessingProcessPropertyProteinsRecombinantsResearchRoleSignal TransductionSkinStretchingStructureSurfaceSynthesis ChemistrySystemTechniquesTissuesWorkbasebiophysical propertiesbonedesigndisease-causing mutationfibrillogenesisfibrous proteinimprovedinnovationinsightmonomernovelnovel strategiesnovel therapeuticsself assemblysynthetic peptidetherapeutic targettreatment strategytriple helix
项目摘要
Collagen is the most abundant protein in humans and the major component of the connective tissues
and is implicated in a wide arrange of disease states including cancer, developmental anomalies,
atherosclerosis and aging. The diverse molecular functions of collagen are closely related to the remarkable
ability of collagen monomer – the triple helix – to form different supramolecular assemblies. Yet, both the
structure and the mechanisms of the fibril formation of collagen remain poorly understood. Lack of such
knowledge has limited our understanding of molecular events involved in tissue development and function and
hindered our understanding of the etiology of diseases related to collagen.
Our long-term goal of research is to understand the mechanism of the fibrillogenesis and its
involvement in biological processes. Fibrillogenesis of fibrillar collagens represents one of the most prevalent
self-assembly processes of collagen and is the essential step in the development and function of bones, skin
and blood vessel walls. The functional collagen fibrils are characterized by a specific axially repeating structure
of 67 nm, known as the D-periodicity. Recently we have developed a bacterial expression system of a
recombinant triple helix, designated Col108 that self-
is determined by both the molecular properties of
specific residues and their specific placements along the triple helix; furthermore, we propose that collagen
mutations impair the self-assembly of the triple helix by disrupting specific interactions and thus inhibit tissue
development at the structural level. The immediate goals of the current proposal are 1) to define the specific
molecular interactions during the self-assembly of Col108, 2) to characterize disease causing mutations on the
self-assembly of Col108 and 3) to generate fibril forming synthetic triple helical peptides. The major innovation
of the proposed work comes from the ability to study the self-association of collagen triple helix, and to
characterize the effects of disease causing mutations at the level of fibril formation. The proposed work will be
carried out using a combination of mutagenesis approach, biophysical characterizations and peptide synthesis
chemistry. Collectively, the proposed work will fundamentally enhance our understanding of the molecular
interactions involved in the fibrillogenesis of collagen. Such knowledge will lead to the identification of
therapeutic targets to improve fibril formation and to enhance the positive cell signaling during tissue
development, as well as to enhance the function of developed tissues. The outcome of this study will also
provide insight into the folding and the self-association of fibrous protein in general and further the research of
engineering collagen-based microscopic fibrils for biomedical applications.
fibrils
胶原蛋白是人体中含量最丰富的蛋白质,也是结缔组织的主要成分
并且与包括癌症,发育异常,
动脉粥样硬化和衰老。胶原蛋白分子功能的多样性与其显著的生物学特性密切相关。
胶原蛋白单体-三螺旋-形成不同超分子组装体的能力。然而,
胶原蛋白原纤维形成的结构和机制仍然知之甚少。缺乏这种
知识限制了我们对组织发育和功能所涉及的分子事件的理解,
阻碍了我们对胶原相关疾病病因的理解。
我们的长期研究目标是了解原纤维形成的机制及其对细胞生长的影响。
参与生物过程。纤维状胶原的纤维形成代表了最普遍的
胶原蛋白的自组装过程,是骨骼、皮肤和皮肤发育和功能的重要步骤,
和血管壁。功能性胶原原纤维的特征在于特定的轴向重复结构
67 nm,称为D周期。最近,我们开发了一种细菌表达系统,
重组三螺旋,命名为Col 108,
是由两种分子性质决定的
特定的残基和它们沿着三螺旋的特定位置;此外,我们提出胶原蛋白
突变通过破坏特定的相互作用而损害三螺旋的自组装,
结构层面的发展。当前提案的直接目标是:(1)确定具体的
Col 108自组装过程中的分子相互作用,2)以表征
Col 108的自组装和3)以产生形成原纤维的合成三螺旋肽。重大创新
的拟议工作来自于研究胶原蛋白三螺旋的自缔合能力,
在原纤维形成水平上表征致病突变的影响。拟议的工作将是
使用诱变方法、生物物理表征和肽合成的组合进行
化学.总的来说,拟议的工作将从根本上提高我们对分子生物学的理解。
参与胶原纤维形成的相互作用。这些知识将导致识别
改善原纤维形成和增强组织中的阳性细胞信号传导的治疗靶点
发育,以及增强发育组织的功能。这项研究的结果也将
提供了深入了解折叠和纤维蛋白质的自缔合一般和进一步的研究,
用于生物医学应用的基于胶原蛋白的微纤维工程。
原纤维
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUJIA XU其他文献
YUJIA XU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUJIA XU', 18)}}的其他基金
A peptide model to study the Fibril Assembly of collagen triple helix
研究胶原三螺旋原纤维组装的肽模型
- 批准号:
10000981 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
A peptide model to study the Fibril Assembly of collagen triple helix
研究胶原三螺旋原纤维组装的肽模型
- 批准号:
9208990 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Biophysical Study of Collagen-von Willebrand Factor Interaction during Thrombosis
血栓形成过程中胶原蛋白-血管性血友病因子相互作用的生物物理学研究
- 批准号:
7430011 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Biophysical Study of Collagen-von Willebrand Factor Interaction during Thrombosis
血栓形成过程中胶原蛋白-血管性血友病因子相互作用的生物物理学研究
- 批准号:
8049056 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Biophysical Study of Collagen-von Willebrand Factor Interaction during Thrombosis
血栓形成过程中胶原蛋白-血管性血友病因子相互作用的生物物理学研究
- 批准号:
7795056 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Biophysical Study of Collagen-von Willebrand Factor Interaction during Thrombosis
血栓形成过程中胶原蛋白-血管性血友病因子相互作用的生物物理学研究
- 批准号:
7597106 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
相似海外基金
A lipid-induced RNA-binding protein in atherosclerosis
动脉粥样硬化中脂质诱导的 RNA 结合蛋白
- 批准号:
10363664 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
A lipid-induced RNA-binding protein in atherosclerosis
动脉粥样硬化中脂质诱导的 RNA 结合蛋白
- 批准号:
10586123 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Functional analysis of ApoA-I/HDL binding protein for the treatment of atherosclerosis(Fostering Joint International Research)
ApoA-I/HDL结合蛋白治疗动脉粥样硬化的功能分析(促进国际联合研究)
- 批准号:
16KK0203 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Development of diagnostic method for atherosclerosis targeting adipokine binding proteins
开发针对脂肪因子结合蛋白的动脉粥样硬化诊断方法
- 批准号:
15H04762 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of a novel IL18 binding protein in atherosclerosis
新型 IL18 结合蛋白在动脉粥样硬化中的作用
- 批准号:
8882740 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Role of a novel IL18 binding protein in atherosclerosis
新型 IL18 结合蛋白在动脉粥样硬化中的作用
- 批准号:
9130248 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Progranulin, a Novel HDL-Binding Protein, Suppresses Systemic Inflammation, Glucose Abnormality and Atherosclerosis
颗粒体蛋白前体是一种新型 HDL 结合蛋白,可抑制全身炎症、血糖异常和动脉粥样硬化
- 批准号:
24390233 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
S100A8/9 calcium binding proteins enhances myeloid cell proliferation and impairs atherosclerosis regression in diabetes
S100A8/9 钙结合蛋白增强骨髓细胞增殖并损害糖尿病患者的动脉粥样硬化消退
- 批准号:
252764 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别: