Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
基本信息
- 批准号:9893161
- 负责人:
- 金额:$ 73.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Angiotensin ReceptorAngiotensin Type 1a ReceptorAngiotensinsAttenuatedBlood PressureBrain regionCardiovascular DiseasesCardiovascular systemCause of DeathCorticosteroneCoupledDevelopmentDiseaseEnergy MetabolismEtiologyEventFunctional disorderGene TransferGenesGeneticHeart RateHumanInterventionLaboratory miceLifeLinkMediatingModelingModernizationMusNervous system structureNeuronsNeurosciencesNeurosecretory SystemsNodose GanglionPerceptionPharmacologyPhysiologyPopulationPredispositionPressoreceptorsPsychological StressResearchStressStructureSystemTechniquesTreatment EfficacyType 2 Angiotensin II ReceptorUnited StatesViralanxiety-like behaviorbehavioral responseblood pressure reductioncardiovascular healthexperimental studygenetic technologyimprovedin vivoindexinginsightneural circuitneural patterningnovel therapeuticsoptogeneticspreclinical studyreceptorrecombinase-mediated cassette exchangerelating to nervous systemresilience
项目摘要
Project Summary
Stressful life events are linked to the etiology of cardiovascular disease (CVD), which is the leading cause of
death in the U.S. The mechanisms by which stress causes pathophysiology contributing to CVD are poorly
understood and effective therapeutics that relieve stress and improve cardiovascular health are lacking. A
premise of this proposal is that exploration of the neural circuits controlling the perception of stress may provide
insight towards mechanisms underlying CVD and interventions aimed at its reversal. Causally-linking patterns
of neural activity to stress and the development of CVD in humans is challenging. However, preclinical studies
using laboratory mice that implement modern neuroscience and genetic technologies to excite or inhibit specific
neural circuits make causally-linking neural activity and indices of stress responsiveness achievable. Using
genetically-modified mice, we revealed that the activity of neurons that express genes encoding particular
angiotensin receptor subtypes is coupled to cardiovascular, neuroendocrine and behavioral responses to stress.
Specifically, we discovered that neurons expressing the angiotensin type-2 (AT2R) and Mas receptor (MasR)
densely populate cortical and limbic brain regions controlling the perception of psychological stress and that
excitation of these neurons decreases blood pressure, heart rate, circulating levels of corticosterone and anxiety-
like behavior. In the periphery, we discovered that the nodose ganglion is densely populated by neurons
expressing the angiotensin type 1a receptor (AT1R). These neurons function as primary baroreceptor afferents
and excitation of these neurons lowers blood pressure, heart rate and energy expenditure. Collectively, these
observations have led to the overall hypothesis that excitation of particular neuronal populations that
express the AT1R, AT2R or MasR alters the perception of stress to protect against CVD. Experiments will
use the Cre-LoxP system in mice with a cadre of modern neuroscience techniques and classical systems
physiology to confirm or refute this hypothesis. Initial experiments utilize Cre-diver mice with virally-mediated
gene transfer and in vivo optogenetics to determine whether the excitation or inhibition of neurons that express
AT1R, AT2R, or MasR attenuates or exacerbates stress responding. Subsequent experiments use a model of
stress-induced pathophysiology to evaluate how the structure and function of neurons that express the AT1R,
AT2R or MasR is altered by disease. The final experiments attempt to alleviate stress-induced pathophysiology
with optogenetic, genetic or pharmacological manipulations that alter the excitability of neurons that express the
AT1R, AT2R or MasR. We anticipate that the proposed research will reveal, at a detailed and mechanistic level,
neural circuits that provide stress relief, thereby guiding development of novel therapeutics for CVD.
项目摘要
应激性生活事件与心血管疾病(CVD)的病因有关,心血管疾病是
美国的死亡压力导致心血管疾病的病理生理学机制很差
了解和有效的治疗方法,以缓解压力和改善心血管健康是缺乏的。一个
这一建议的前提是探索控制压力感知的神经回路可能会提供
洞察心血管疾病的潜在机制和旨在扭转其趋势的干预措施。因果关系模式
人类神经活动对应激和心血管疾病的发展是具有挑战性的。然而,临床前研究
使用实施现代神经科学和遗传技术的实验室小鼠来刺激或抑制特定的
神经回路使神经活动和应激反应指数之间的因果联系成为可能。vbl.使用
转基因小鼠,我们发现表达编码特定基因的神经元的活动
血管紧张素受体亚型与心血管、神经内分泌和行为应激反应有关。
具体地说,我们发现表达血管紧张素2型(AT2R)和Mas受体(MASR)的神经元
大脑皮质和边缘区域密集分布,控制着对心理压力的感知
这些神经元的兴奋可以降低血压、心率、循环中的皮质酮水平和焦虑--
就像行为一样。在周围,我们发现结状神经节内有密集的神经元。
表达血管紧张素1a型受体(AT1R)。这些神经元起初级压力感受器传入的作用。
这些神经元的兴奋可以降低血压、心率和能量消耗。总而言之,这些
观察结果导致了一个总体假设,即对特定神经元群体的兴奋
表达AT1R、AT2R或MASR可以改变人们对压力的感知,从而预防心血管疾病。实验将会
在拥有大量现代神经科学技术和经典系统的小鼠身上使用Cre-loxP系统
生理学证实或驳斥这一假说的生理学利用Cre-diver小鼠进行病毒介导的初步实验
基因转移和体内光遗传学确定神经元是兴奋还是抑制表达
AT1R、AT2R或MASR可减弱或加剧应激反应。随后的实验使用了一个模型
应激诱导的病理生理学来评估表达AT1R的神经元的结构和功能,
AT2R或MASR会因疾病而改变。最后的实验试图减轻应激诱导的病理生理学
通过光遗传、遗传或药物操作改变神经元的兴奋性,表达
AT1R、AT2R或MASR。我们预计,拟议的研究将在详细和机械的层面上揭示,
神经回路提供压力缓解,从而指导心血管疾病新疗法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Gerald Krause其他文献
Eric Gerald Krause的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Gerald Krause', 18)}}的其他基金
Leveraging vagal oxytocin receptors to understand cardiometabolic interoception
利用迷走神经催产素受体了解心脏代谢内感受
- 批准号:
10698525 - 财政年份:2022
- 资助金额:
$ 73.34万 - 项目类别:
Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
- 批准号:
10550158 - 财政年份:2020
- 资助金额:
$ 73.34万 - 项目类别:
Interrogating stress-relieving neural circuits to alleviate cardiovascular disease
研究缓解压力的神经回路以减轻心血管疾病
- 批准号:
10331014 - 财政年份:2020
- 资助金额:
$ 73.34万 - 项目类别:
Neurons expressing angiotensin type 2 receptors in the NTS as an access point for cardiovascular control.
NTS 中表达 2 型血管紧张素受体的神经元作为心血管控制的接入点。
- 批准号:
10082461 - 财政年份:2017
- 资助金额:
$ 73.34万 - 项目类别:
Central Mechanisms Underlying the Stress Dampening Effects of Acute Hypernatremia
急性高钠血症应激抑制作用的中枢机制
- 批准号:
8978315 - 财政年份:2014
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8307132 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8511788 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central Angiotensin receptors and teh neural control of homeostasis
中枢血管紧张素受体和稳态的神经控制
- 批准号:
8328924 - 财政年份:2011
- 资助金额:
$ 73.34万 - 项目类别:
Central AT1 receptors and the integrated stress response.
中枢 AT1 受体和综合应激反应。
- 批准号:
7707282 - 财政年份:2009
- 资助金额:
$ 73.34万 - 项目类别:
The effect of AT1R antisense on centrally-mediated responses to angiotension II
AT1R 反义对中枢介导的血管紧张素 II 反应的影响
- 批准号:
7477932 - 财政年份:2007
- 资助金额:
$ 73.34万 - 项目类别: