Reliability Modeling of Shoulder Fatigue and Recovery for Warehouse Operators Performing Dynamic Tasks
仓库操作员执行动态任务的肩部疲劳和恢复的可靠性建模
基本信息
- 批准号:9896072
- 负责人:
- 金额:$ 18.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
The growing demand for e-commerce has resulted in an increase in warehouses and distribution centers, along
with the needed workforce to run the operations. For improved efficiency, companies are shifting to parts-to-
person systems for order fulfillment to reach productivity levels near 500 items/hour per worker. These systems
create manual order picking jobs that are highly repetitive and primarily involve the arm and shoulder. Repetitive
arm movements, performed for prolonged durations without adequate rest, can result in fatigue and discomfort
for the shoulder, which can lead to musculoskeletal disorders (MSDs). Both stock movers and order fillers have
above average incidence rates of injuries involving days away from work. Reducing the number of MSDs is an
objective of the Transportation, Warehousing, and Utilities (TWU) Council and the Musculoskeletal Health (MSH)
Cross-Sector NORA Agendas. Preventing MSDs depends on effective job design and work-rest schedules that
minimize fatigue. However, current practice relies on fatigue models developed for static muscle loading, which
fail to account for the dynamic demands experienced by order pickers. Thus, the primary objective of the
proposed project is to enable prediction of fatigue and recovery resulting from manual order picking, focusing on
parts-to-person systems with highly repetitious shoulder work. A secondary objective is to translate the research
to practice (r2P) by providing practitioners with these predictive models to enable incorporation into their job
evaluation and design practices. These objectives address the MSH cross-sector agenda call for research on
the integration of real-time data with validated predictive models that address the variability in tasks and work-
rest cycles. The models will be constructed from data collected during an in-lab study. Using a central composite
design, fatigue development will be evaluated across a range of load levels and repetition rates, and recovery
from fatigue will be measured across a range of rest durations. Subjects will complete four periods of order
picking, separated by designated rest periods. Dependent measures will include subjective ratings of fatigue,
kinematics data from wearable sensors, and task performance. These measures will be unified into a fatigue
outcome metric using functional regression. Then, reliability theory will be applied to predict the unified outcome
during repeated fatigue and recovery cycles as degradation and inverse degradation processes, respectively,
accounting for task conditions, worker characteristics, and time. Field validation at a partner warehouse will be
performed, where model predictions will be compared to worker subjective ratings for three order picking jobs.
Once validated, the models will be packaged into a web-based application which will be disseminated to
practitioners (output), enabling prediction of future worker fatigue levels, which is more informative than existing
methods that provide a snapshot of the worker’s current condition or risk. Application of the revised models can
facilitate improved workplace design and job scheduling to accommodate the capacities of order pickers, which
supports the long-term goals of preventing musculoskeletal disorders and improving worker health (outcome).
项目摘要
对电子商务的需求不断增长,导致仓库和分销中心的增加
使用所需的劳动力来运行操作。为了提高效率,公司正在转移到零件 -
订单履行的人员系统,每位工人每小时达到500件物品,达到生产率水平。这些系统
创建高度重复的手动订单挑选工作,主要涉及手臂和肩膀。重复
手臂运动,长时间进行持续时间,没有足够的休息,可能会导致疲劳和不适
对于肩膀,可能导致肌肉骨骼疾病(MSD)。两种库存的动作和订单填充剂都有
高于平均伤害参与日的发病率远离工作。减少MSD的数量是
运输,仓库和公用事业(TWU)理事会和肌肉骨骼健康(MSH)的目标
跨部门诺拉议程。防止MSDS取决于有效的工作设计和工作时间表
最小化疲劳。但是,当前的实践依赖于用于静态肌肉负荷开发的疲劳模型,这
无法说明订单选择器所经历的动态需求。那,是
拟议的项目是为了预测手动订单的疲劳和恢复,重点是
零件系统具有高度重复的肩部工作。次要目标是翻译研究
通过为实践者提供这些预测模型来实践(R2P)
评估和设计实践。这些目标涉及MSH跨部门议程呼吁进行研究
实时数据与经过验证的预测模型的集成,以解决任务和工作的可变性 -
休息周期。这些模型将由在LAB研究期间收集的数据构建。使用中央复合材料
设计,疲劳开发将在一系列负载水平和重复率和恢复范围内进行评估
疲劳将在一系列休息时间内测量。受试者将完成四个订单
采摘,由指定的休息时间隔开。依赖措施将包括疲劳的主观评分,
可穿戴传感器和任务性能的运动学数据。这些措施将统一为疲劳
使用功能回归的结果指标。然后,将应用可靠性理论来预测统一结果
在反复疲劳和恢复周期中,分别作为降解和逆降解过程
考虑任务条件,工人特征和时间。合作伙伴仓库的现场验证将是
执行,将模型预测与三个订单挑选工作的工人主观评分进行比较。
一旦验证,这些模型将被包装到基于Web的应用程序中
从业者(输出),可以预测未来的工人疲劳水平,这比现有
提供工人当前状况或风险的快照的方法。修订模型的应用可以
促进改进的工作场所设计和工作时间表,以适应订单挑选者的能力,
支持防止肌肉骨骼疾病和改善工人健康(结果)的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lora Anne Cavuoto其他文献
Lora Anne Cavuoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lora Anne Cavuoto', 18)}}的其他基金
University at Buffalo, SUNY Occupational Safety and Health Training Project
纽约州立大学布法罗分校职业安全与健康培训项目
- 批准号:
10643724 - 财政年份:2020
- 资助金额:
$ 18.84万 - 项目类别:
University at Buffalo, SUNY Occupational Safety and Health Training Project
纽约州立大学布法罗分校职业安全与健康培训项目
- 批准号:
10223869 - 财政年份:2020
- 资助金额:
$ 18.84万 - 项目类别:
University at Buffalo, SUNY Occupational Safety and Health Training Project
纽约州立大学布法罗分校职业安全与健康培训项目
- 批准号:
10045799 - 财政年份:2020
- 资助金额:
$ 18.84万 - 项目类别:
University at Buffalo, SUNY Occupational Safety and Health Training Project
纽约州立大学布法罗分校职业安全与健康培训项目
- 批准号:
10409523 - 财政年份:2020
- 资助金额:
$ 18.84万 - 项目类别:
Reliability Modeling of Shoulder Fatigue and Recovery for Warehouse Operators Performing Dynamic Tasks
仓库操作员执行动态任务的肩部疲劳和恢复的可靠性建模
- 批准号:
10268924 - 财政年份:2020
- 资助金额:
$ 18.84万 - 项目类别:
University at Buffalo, SUNY Occupational Safety and Health Training Project
纽约州立大学布法罗分校职业安全与健康培训项目
- 批准号:
9526916 - 财政年份:2015
- 资助金额:
$ 18.84万 - 项目类别:
Revised Force-Endurance Models for the US Workforce
修订后的美国劳动力力量-耐力模型
- 批准号:
8619728 - 财政年份:2014
- 资助金额:
$ 18.84万 - 项目类别:
相似国自然基金
热液改造型页岩成储机理研究——以松辽盆地青一段为例
- 批准号:42372150
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:52205201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
The Role of Patient Capacity in Chronic Kidney Disease Trajectories
患者能力在慢性肾脏病轨迹中的作用
- 批准号:
10737920 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Targeted Automated Nephrology e-Consultation for Diabetic Kidney Disease
糖尿病肾病有针对性的自动化肾病电子咨询
- 批准号:
10591976 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Formation of a functional tendon enthesis during development and healing
在发育和愈合过程中形成功能性肌腱附着点
- 批准号:
10587399 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Structural racism and youth firearm violence: Socioecological mechanisms and resilience
结构性种族主义和青少年枪支暴力:社会生态机制和复原力
- 批准号:
10723231 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别:
Differential Susceptibility for Developing Chronic Post-Surgical Pain Across Sleep Trajectories and Inflammatory Presentations
不同睡眠轨迹和炎症表现对慢性术后疼痛的易感性存在差异
- 批准号:
10572513 - 财政年份:2023
- 资助金额:
$ 18.84万 - 项目类别: