Defining how T cells measure the strength of T cell receptor signals

定义 T 细胞如何测量 T 细胞受体信号的强度

基本信息

项目摘要

Abstract T cells are mediators of the adaptive immune response. To properly mount a response, T cells use extracellular receptors to sense their environment and transduce signals to intracellular signaling networks. While many signaling pathways relevant to T cell function are established, less is known about how these pathways are modulated to discriminate between different types of signals and thus represents a significant gap in our knowledge base. Such knowledge would aid in controlling T cell activation and differentiation in multiple therapeutic settings. One dominant signaling input is T cell receptor (TCR) signaling strength, which regulates T cell differentiation, thymic development and cytokine signaling. In previous work, we identified that the strength of the T cell receptor signal differentially regulated the AKT/mTOR signaling axis. TCR signal strength regulated the phosphorylation of AKT which in turn controls AKT substrate specificity so that different TCR signal strengths engage qualitatively different AKT signaling networks. While these results are intriguing, the basic biochemical mechanisms that couple TCR signal strength to downstream signaling networks including differential AKT activation remains ill defined. One pathway that could couple TCR signal strength to intracellular signaling networks is phosphatidylinositol (PIP) metabolism. Many PIP species are bioactive and regulate signaling, transcription, metabolism and RNA splicing. Following pMHC binding to TCR, PI3K phosphorylates PI(4,5)P2 to generate PIP3 at the cell membrane. PIP3 has garnered interest because it activates kinases important for immune function, including AKT and PDK1. However, other bioactive PIP lipid species are generated and their functions in T cells are ill established. Based on a computational model we built to study the AKT activation in a T cell, our simulation unexpectedly predicted that different TCR signal strengths would generate different PIPs. Experimentally, we found that other bioactive PIPs in addition to PIP3 are generated at appreciable levels during T cell activation and that different TCR signal strengths generate different PIP species. Our proteomic screen identified proteins in a T cell that bind to specific PIPs, which positions us to identify novel pathways that are engaged during T cell activation. The novel result that T cells transduce TCR signal strength by generating different PIPs has the potential to illuminate a basic biochemical mechanism for how T cell interprets extracellular signals. These preliminary data serve as the basis of our central hypothesis that T cells encode TCR signal strength by generating different phosphatidylinositols to control T cell fate decisions, which will be tested by: 1) identifying mechanisms that control differential generation of phosphatidylinositols in response to TCR signal strength and 2) identifying how differential generation of phosphatidylinositols functions in the Treg versus T helper cell fate choice and the Th1 versus Th2 cell fate choice. Taken together, results from this work will provide novel mechanisms of receptor signal integration at the molecular level and identify functions of differential phosphatidylinositol generation in the context of CD4+ T cell fate choices.
摘要 T细胞是适应性免疫应答的介质。为了正确地建立反应,T细胞使用细胞外 受体感知其环境并将信号传递给细胞内信号网络。虽然许多 虽然与T细胞功能相关的信号通路已经建立,但关于这些通路如何被激活的知之甚少。 调制以区分不同类型的信号,因此代表了我们的研究中的重大差距。 知识库这样的知识将有助于控制T细胞的活化和分化,在多个细胞中。 治疗环境。一个主要的信号输入是T细胞受体(TCR)信号强度,其调节T细胞受体(TCR)信号强度。 细胞分化、胸腺发育和细胞因子信号传导。在以前的工作中,我们发现, T细胞受体信号的差异调节AKT/mTOR信号轴。TCR信号强度调节 AKT磷酸化反过来控制AKT底物特异性, 参与不同性质的AKT信号网络。虽然这些结果很有趣,但基本的生物化学 将TCR信号强度耦合到包括差分AKT的下游信令网络的机制 激活仍然不明确。一种可以将TCR信号强度与细胞内信号传导结合的途径 磷脂酰肌醇(PIP)代谢。许多PIP物质具有生物活性并调节信号传导, 转录、代谢和RNA剪接。在pMHC与TCR结合后,PI 3 K将PI(4,5)P2磷酸化, 在细胞膜上产生PIP 3。PIP 3已经引起了人们的兴趣,因为它激活了对 免疫功能,包括AKT和PDK 1。然而,产生了其他生物活性PIP脂质种类,并且它们的生物活性也是如此。 T细胞的功能不健全。基于我们建立的一个计算模型来研究AKT激活, T细胞,我们的模拟出乎意料地预测不同的TCR信号强度将产生不同的PIP。 在实验上,我们发现除了PIP 3之外,其他生物活性PIPs在细胞周期中也以可观的水平产生。 T细胞活化和不同的TCR信号强度产生不同的PIP种类。我们的蛋白质组筛选 在T细胞中发现了与特定PIP结合的蛋白质,这使我们能够确定新的途径, 在T细胞活化过程中参与。新的结果是T细胞通过产生TCR信号强度, 不同的PIP有可能阐明T细胞如何翻译细胞外信号的基本生化机制, 信号.这些初步数据作为我们的中心假设的基础,即T细胞编码TCR信号 通过产生不同的磷脂酰肌醇来控制T细胞命运决定,这将通过以下方式进行测试:1) 识别响应TCR信号控制磷脂酰肌醇差异产生的机制 强度和2)鉴定磷脂酰肌醇的差异产生如何在Treg与T细胞中起作用 辅助细胞命运选择和Th 1对Th 2细胞命运选择。总之,这项工作的结果将提供 在分子水平上研究受体信号整合的新机制, 在CD 4 + T细胞命运选择的背景下磷脂酰肌醇的产生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Francis Hawse其他文献

William Francis Hawse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
  • 批准号:
    31171277
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
  • 批准号:
    479128
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Operating Grants
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
  • 批准号:
    23H02155
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10788032
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
Biomarkers of vascular endothelial dysfunction in systemic autoimmune diseases: analysis of circulating microRNAs
系统性自身免疫性疾病中血管内皮功能障碍的生物标志物:循环 microRNA 分析
  • 批准号:
    23K14742
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
  • 批准号:
    10864719
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
  • 批准号:
    10586562
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
NOVEL HUMORAL AND CELLULAR BIOMARKERS OF AUTOIMMUNE DISEASES CAUSED BY IMMUNOTHERAPY
免疫治疗引起的自身免疫性疾病的新型体液和细胞生物标志物
  • 批准号:
    10593224
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
Regulation of autoimmune diseases by PTPN22 phosphatase
PTPN22磷酸酶对自身免疫性疾病的调节
  • 批准号:
    23K06589
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decipher and target GABA metabolism and GABA receptor-mediated signaling in autoimmune diseases
破译并靶向自身免疫性疾病中的 GABA 代谢和 GABA 受体介导的信号传导
  • 批准号:
    10623380
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
Targeting the long isoform of the prolactin receptor to treat autoimmune diseases and B-cell malignancies
靶向催乳素受体的长亚型来治疗自身免疫性疾病和 B 细胞恶性肿瘤
  • 批准号:
    10735148
  • 财政年份:
    2023
  • 资助金额:
    $ 19.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了