A new bladder cancer model based on tissue reprogramming and gene targeting

基于组织重编程和基因靶向的新膀胱癌模型

基本信息

  • 批准号:
    9896122
  • 负责人:
  • 金额:
    $ 21.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary: With recent advances in cellular reprogramming and gene editing it became possible to envision new approaches for tissue modeling in normal and disease contexts. Specifically, we propose to use transdifferentiation and gene targeting to generate a novel genetically-engineered model system for studies of human cancer. We recently developed a highly innovative methodology for generating fully functional prostate tissue in renal grafts based on a computational system approach that identifies synergistic specification genes (Talos et al., Nat Commun, 2017). We propose here to apply and expand these methods for modeling human bladder cancer by combining lineage conversion of fibroblasts with tissue recombination assays, advanced computational systems biology algorithms and CRIPSR/Cas9-mediated gene targeting of clinically-relevant mutations. In our preliminary studies, we have shown that fibroblasts can be directly converted into epithelial cells following transient expression of the pluripotency factors in pro-epithelial culture conditions. Moreover, these induced epithelial cells are amenable to further terminal differentiation into bladder tissue in tissue recombination assays in vivo under the inductive force of bladder specific mesenchyme. Based on these preliminary data, we hypothesize that the inherent plasticity of readily-accessible fibroblasts can be exploited to generate bladder epithelia through a combination of key bladder specification genes, reprogramming techniques and tissue recombination assays. Moreover, we hypothesize that the reprogrammed bladder tissue is amenable to malignant transformation through CRISPR-mediated gene targeting. To test this hypothesis and generate a new model of human cancer, we propose to perform (1) Direct conversion of human fibroblasts into bladder epithelium by activation of master regulator genes of normal bladder epithelium, identified by bioinformatic analysis of regulatory genetic networks of bladder or by a candidate gene approach and (2) Modeling human bladder cancer by CRISPR-mediated gene targeting in the reprogrammed tissue of tumor suppressors and oncogenes relevant for human disease. Our studies will provide novel insights into the mechanisms underlying bladder tumorigenesis and a novel platform for drug screening and for discovery of patient-specific early prognostic biomarkers.
项目总结: 随着细胞重新编程和基因编辑的最新进展,有可能设想出新的 正常和疾病环境下的组织建模方法。具体来说,我们建议使用 转分化和基因打靶技术构建一种新的基因工程模型系统 人类癌症。我们最近开发了一种高度创新的方法来产生完全功能的前列腺 基于识别协同规范基因的计算系统方法的肾移植中的组织 (Talos等人,NAT Commun,2017)。我们建议将这些方法应用并扩展到人体建模中 通过结合成纤维细胞的谱系转化和组织重组分析,晚期膀胱癌 计算系统生物学算法与CRIPSR/Cas9介导的临床相关基因打靶 突变。在我们的初步研究中,我们已经表明成纤维细胞可以直接转化为上皮细胞 在亲上皮培养条件下瞬时表达多能因子的细胞。此外, 这些被诱导的上皮细胞能够在组织中进一步向膀胱组织终末分化 在膀胱特异性间质诱导力作用下进行体内重组实验。基于这些 初步数据,我们假设可以利用易于获得的成纤维细胞的固有可塑性来 通过组合关键的膀胱规范基因、重新编程技术来生成膀胱上皮 和组织重组试验。此外,我们假设重新编程的膀胱组织是顺从的。 通过CRISPR介导的基因靶向向恶性转化。 为了检验这一假设并产生一个新的人类癌症模型,我们建议执行(1)直接 人成纤维细胞激活正常主调控基因向膀胱上皮细胞转化的研究 膀胱上皮,通过膀胱调节遗传网络的生物信息学分析或通过 候选基因方法和(2)CRISPR介导的基因打靶建立人膀胱癌模型 与人类疾病相关的肿瘤抑制基因和癌基因的重新编程组织。我们的研究将 为研究膀胱癌的发生机制提供了新的见解,并为药物开发提供了新的平台 筛选和发现患者特定的早期预后生物标记物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Flaminia Talos其他文献

Flaminia Talos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Flaminia Talos', 18)}}的其他基金

Mechanisms of immune control of intratumor heterogeneity and clonal competition
肿瘤内异质性和克隆竞争的免疫控制机制
  • 批准号:
    10431216
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Mechanisms of immune control of intratumor heterogeneity and clonal competition
肿瘤内异质性和克隆竞争的免疫控制机制
  • 批准号:
    10552000
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
A new bladder cancer model based on tissue reprogramming and gene targeting
基于组织重编程和基因靶向的新膀胱癌模型
  • 批准号:
    10084281
  • 财政年份:
    2020
  • 资助金额:
    $ 21.91万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了