Reconstructing mechanisms of somatic variation in diverse cellular lineages
重建不同细胞谱系体细胞变异的机制
基本信息
- 批准号:9895197
- 负责人:
- 金额:$ 35.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-09 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesBasic ScienceBiologyCancer ModelCancerousCell LineageCellsCohort StudiesComputational algorithmComputer ModelsComputing MethodologiesDataData AnalysesData ScienceData SourcesDefectDevelopmentDevelopmental ProcessDiagnosisDiseaseEngineeringFoundationsFrequenciesGenerationsGeneticGenetic VariationGenomeGenomicsGoalsGuidelinesHealthHumanHuman DevelopmentIndividualInfrastructureInheritedKnowledgeMalignant NeoplasmsMapsMathematicsMethodsMosaicismMutationNatural regenerationNatureNucleotidesOrganismPersonsPhylogenetic AnalysisPilot ProjectsPrecancerous ConditionsProcessRecording of previous eventsReproducibilityResearch DesignResourcesRoleScienceSingle Nucleotide PolymorphismSomatic MutationStatistical AlgorithmStatistical ModelsStructureTechnologyTestingTimeTissuesTranslatingTreesUnmarried personVariantWorkcancer riskcomputerized toolsdesigndevelopmental diseaseexperienceexperimental studygenomic datagrasphuman diseasehuman tissueimprovedinformatics infrastructureinformatics toolmathematical algorithmmathematical modelneoplastic cellnext generationnovelnovel sequencing technologypremalignantreconstructionsimulationtheoriestooltumor
项目摘要
Project Summary
Genomic technologies have made it possible to reconstruct, with ever-growing scope and detail, the landscape
of genetic variations across individuals, tissues, and time. One consequence of this is a growing appreciation
for the importance of somatic genetic variation. Somatic variations, and the hypermutability defects that can
produce them, have been most extensively studied in the context of cancers, but they have relevance to a
variety of other disorders, both germline and sporadic, as well as value in basic research into development and
regeneration. Yet we are only beginning to understand the processes by which genetic variations accumulate
in cancers and a few well-defined precancerous conditions. We so far know little about how somatic variation
processes act in potentially cancerous but asymptomatic or in purely healthy tissues. Understanding somatic
variation more broadly is a crucial question for developing informed models of cancer risk, pursuing options to
identify and potentially treat cancers before they start, as well as for diagnosing and treating other illnesses
that arise from non-cancerous somatic hypermutability or spontaneous genetic mosaicism.
Experience reconstructing cell lineages in cancers provides the foundation for building comparable
methods for the broader landscape of somatic genetic variability across cancerous, pre-cancerous, and non-
cancerous tissues. One crucial lesson of cell lineage reconstruction in cancers is that doing reproducible
science, and planning the experimental data-generation studies needed to do so, requires first understanding
the data to be generated and the mathematical/statistical models and algorithms by which it will be analyzed.
The field of tumor phylogenetics has provided a groundwork of theory and tools for reconstructing cell lineages
in the presence of diverse somatic mutation processes that can be adapted to address the problem of
reconstructing somatic variation processes more broadly. It has also provided crucial experience into best
practices and pitfalls in designing variation studies, which will be needed to guide new large-scale experimental
studies into non-cancerous somatic variation. Mapping the full landscape of human somatic variation and the
mechanisms that produce it will be a large effort of numerous experimental and computational groups that will
not succeed without a clear grasp on the data science problems it entails.
The proposed work will help to build the informatics infrastructure needed for somatic variation study
through four specific aims intended to leverage decades of experience with reconstructing somatic evolutionary
histories in cancers. It will advance the state-of-the-art of tools for variant calling and cell lineage tracing to
handle diverse mechanisms of somatic structural variations (SVs), copy number aberrations (CNAs), and
single nucleotide variations (SNVs). It will use these methods via simulation study to assess data needs and
study designs for identifying diverse somatic variation mechanisms. Finally, it will apply them in a pilot study of
existing variation resources, both to validate their use in and beyond the cancer context and to perform novel
discovery of cancerous, non-cancerous, and pre-cancerous somatic variation mechanisms.
项目摘要
基因组技术使我们有可能以不断增长的范围和细节重建景观
个体、组织和时间的遗传变异。其结果之一是,
体细胞遗传变异的重要性。体细胞变异和超变缺陷,
产生它们,在癌症的背景下进行了最广泛的研究,但它们与癌症相关,
各种其他疾病,包括生殖系和散发性疾病,以及在基础研究中的价值,
再生然而,我们才刚刚开始了解遗传变异积累的过程,
在癌症和一些明确的癌前病变中。到目前为止,我们对体细胞变异
过程在潜在的癌性但无症状的或纯健康的组织中起作用。了解躯体
更广泛的变化是发展癌症风险的知情模型的关键问题,
在癌症开始之前识别和潜在治疗癌症,以及诊断和治疗其他疾病
由非癌性体细胞超变或自发性遗传嵌合体引起。
在癌症中重建细胞谱系的经验为建立可比较的
用于癌性、癌前和非癌性的体细胞遗传变异性的更广泛景观的方法,
癌组织癌症细胞谱系重建的一个关键教训是,
科学,以及规划所需的实验数据生成研究,需要首先了解
要生成的数据以及分析数据的数学/统计模型和算法。
肿瘤遗传学领域为细胞谱系重建提供了理论基础和工具
在存在不同的体细胞突变过程的情况下,可以进行调整以解决以下问题
更广泛地重建体细胞变异过程。它还为最佳实践提供了重要经验,
设计变异研究的实践和陷阱,这将需要指导新的大规模实验
非癌性体细胞变异的研究绘制人类躯体变异的全貌,
产生它的机制将是许多实验和计算小组的巨大努力,
如果没有对数据科学问题的清晰把握,就不会成功。
该工作将有助于建立体细胞变异研究所需的信息学基础设施
通过四个具体的目标,旨在利用数十年的经验,
癌症的历史它将推动变异识别和细胞谱系追踪工具的发展,
处理体细胞结构变异(SV)、拷贝数畸变(CNA)和
单核苷酸变异(SNV)。它将通过模拟研究使用这些方法来评估数据需求,
研究设计,以确定不同的体细胞变异机制。最后,它将把它们应用于一项试点研究,
现有的变异资源,既要验证它们在癌症背景下的使用,又要进行新的
发现癌性、非癌性和癌前体细胞变异机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell S Schwartz其他文献
Network and Pathway Analysis of Cancer Susceptibility (A)
癌症易感性网络与通路分析(A)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2
- 作者:
Nancy Guo;Russell S Schwartz;Jiang Qian;Peilin Jia;Youping Deng - 通讯作者:
Youping Deng
Russell S Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell S Schwartz', 18)}}的其他基金
Reconstructing mechanisms of somatic variation in diverse cellular lineages
重建不同细胞谱系体细胞变异的机制
- 批准号:
10544726 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
Reconstructing mechanisms of somatic variation in diverse cellular lineages
重建不同细胞谱系体细胞变异的机制
- 批准号:
10329961 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
Reconstructing mechanisms of somatic variation in diverse cellular lineages
重建不同细胞谱系体细胞变异的机制
- 批准号:
10083750 - 财政年份:2020
- 资助金额:
$ 35.22万 - 项目类别:
DECONVOLUTION OF CLONAL HETEROGENEITY FROM BULK AND SINGLE-CELL VARIATION DATA
从大量和单细胞变异数据中解卷积克隆异质性
- 批准号:
9308198 - 财政年份:2017
- 资助金额:
$ 35.22万 - 项目类别:
Inferring in vivo Capsid Assembly Kinetics from in vitro by Stochastic Simulation
通过随机模拟从体外推断体内衣壳组装动力学
- 批准号:
7874520 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
Heterogeneous Cancer Progression from Microarray Data
微阵列数据的异质性癌症进展
- 批准号:
7694533 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
Inferring in vivo Capsid Assembly Kinetics from in vitro by Stochastic Simulation
通过随机模拟从体外推断体内衣壳组装动力学
- 批准号:
8295001 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
Heterogeneous Cancer Progression from Microarray Data
微阵列数据的异质性癌症进展
- 批准号:
8259813 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
Heterogeneous Cancer Progression from Microarray Data
微阵列数据的异质性癌症进展
- 批准号:
8193113 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
Inferring in vivo Capsid Assembly Kinetics from in vitro by Stochastic Simulation
通过随机模拟从体外推断体内衣壳组装动力学
- 批准号:
8098132 - 财政年份:2009
- 资助金额:
$ 35.22万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.22万 - 项目类别:
Research Grant